In a cross-sectional survey carried out in west Africa (The Gambia), where Plasmodium falciparum malaria is endemic with seasonal transmission, 178 individuals 1-75 years of age were assessed for their antibody response to the malaria vaccine candidate, merozoite surface protein 2 (MSP2). Total IgG to recombinant antigens representing full-length, repetitive, and group-specific domains of both allelic families of MSP2 was determined by ELISA. The IgG-subclass profile of IgG-positive sera was assessed. Antibody prevalence was age-dependent, reaching a peak during adolescence. In MSP2-seropositive individuals, there was a predominance of cytophilic antibodies (IgG1 and IgG3); IgG1 antibodies were prevalent in children less than 10 years of age, whereas in adolescents and adults MSP2-specific antibodies were predominantly IgG3. In parallel, we conducted a longitudinal study of children (3-8 years of age) from the same community; sera collected before the malaria transmission season were tested for the presence of anti-MSP2 antibodies. The subsequent susceptibility of these children to clinical malaria was monitored and the association between anti-MSP2 antibodies of different IgG subclasses and resistance to clinical malaria was tested. The presence of IgG3 antibodies to MSP2 serogroup A was negatively associated with the risk of clinical malaria whereas IgG1 antibodies to MSP2 serogroup B were associated with an increased risk of clinical infection. Our data suggest that age/exposure-related acquisition of IgG3 antibodies to MSP2 may contribute to the development of clinically protective immunity to malaria.
Local adaptation in response to spatially varying selection pressures is widely recognized as a ubiquitous feature for many organisms. In contrast, our understanding of local adaptation to temporally varying selection pressures is limited. To advance our understanding of local adaptation to temporally varying selection pressures, we studied genomic signatures of seasonal adaptation in Drosophila melanogaster. We generated whole-genome estimates of allele frequencies from flies sampled during the spring and fall from 15 localities. We show that seasonal adaptation is a general feature fly populations and that the direction of seasonal adaptation can be predicted by weather conditions in the weeks prior to sampling. We find that seasonal changes in allele frequency are mirrored by spatial variation in allele frequency and that seasonal adaptation affects allele frequencies at ~1.0-2.5% of polymorphisms genomewide. Our work demonstrates that seasonal adaptation is a major evolutionary force affecting D. melanogaster populations living in temperate environments.
High-throughput DNA sequencing technologies have revolutionized genomic analysis, including the de novo assembly of whole genomes. Nevertheless, assembly of complex genomes remains challenging, in part due to the presence of dispersed repeats which introduce ambiguity during genome reconstruction. Transposable elements (TEs) can be particularly problematic, especially for TE families exhibiting high sequence identity, high copy number, or complex genomic arrangements. While TEs strongly affect genome function and evolution, most current de novo assembly approaches cannot resolve long, identical, and abundant families of TEs. Here, we applied a novel Illumina technology called TruSeq synthetic long-reads, which are generated through highly-parallel library preparation and local assembly of short read data and which achieve lengths of 1.5–18.5 Kbp with an extremely low error rate (0.03% per base). To test the utility of this technology, we sequenced and assembled the genome of the model organism Drosophila melanogaster (reference genome strain y; cn, bw, sp) achieving an N50 contig size of 69.7 Kbp and covering 96.9% of the euchromatic chromosome arms of the current reference genome. TruSeq synthetic long-read technology enables placement of individual TE copies in their proper genomic locations as well as accurate reconstruction of TE sequences. We entirely recovered and accurately placed 4,229 (77.8%) of the 5,434 annotated transposable elements with perfect identity to the current reference genome. As TEs are ubiquitous features of genomes of many species, TruSeq synthetic long-reads, and likely other methods that generate long-reads, offer a powerful approach to improve de novo assemblies of whole genomes.
Consistent individual differences in behaviour, and behavioural correlations within and across contexts, are referred to as animal personalities. These patterns of variation have been identified in many animal taxa and are likely to have important ecological and evolutionary consequences. Despite their importance, genetic and environmental sources of variation in personalities have rarely been characterized in wild populations. We used a Bayesian animal model approach to estimate genetic parameters for aggression, activity and docility in North American red squirrels (Tamiasciurus hudsonicus). We found support for low heritabilities (0.08–0.12), and cohort effects (0.07–0.09), as well as low to moderate maternal effects (0.07–0.15) and permanent environmental effects (0.08–0.16). Finally, we found evidence of a substantial positive genetic correlation (0.68) and maternal effects correlation (0.58) between activity and aggression providing evidence of genetically based behavioural correlations in red squirrels. These results provide evidence for the presence of heritable variation in red squirrel behaviour, but also emphasize the role of other sources of variation, including maternal effects, in shaping patterns of variation and covariation in behavioural traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.