Although opioids have known antidepressant activity, their use in major depressive disorder (MDD) has been greatly limited by risk of abuse and addiction. Our aim was to determine whether opioid modulation achieved through a combination of a μ-opioid partial agonist, buprenorphine (BUP), and a potent μ-opioid antagonist, samidorphan (SAM), would demonstrate antidepressant activity without addictive potential. A placebo-controlled crossover study assessed the opioid pharmacodynamic profile following escalating doses of SAM co-administered with BUP in opioid-experienced adults. A subsequent 1-week, placebo-controlled, parallel-group study was conducted in subjects with MDD and an inadequate response to standard antidepressant therapy. This second study evaluated safety and efficacy of ratios of BUP/SAM that were associated with partial and with maximal blockade of opioid responses in the initial study. Pupillometry, visual analog scale assessments, and self-reported questionnaires demonstrated that increasing amounts of SAM added to a fixed dose of BUP resulted in dose-dependent reductions in objective and subjective opioid effects, including euphoria and drug liking, in opioid-experienced adults. Following 7 days of treatment in subjects with MDD, a 1 : 1 ratio of BUP and SAM, the ratio associated with maximal antagonism of opioid effects, exhibited statistically significant improvement vs placebo in HAM-D17 total score (p=0.032) and nearly significant improvement in Montgomery-Åsberg Depression Rating Scale (MADRS) total score (p=0.054). Overall, BUP/SAM therapy was well tolerated. A combination of BUP and SAM showed antidepressant activity in subjects with MDD. Balanced agonist–antagonist opioid modulation represents a novel and potentially clinically important approach to the treatment of MDD and other psychiatric disorders.
Hepatic disposition of 5 (and 6)-carboxy-2Ј,7Ј-dichlorofluorescein (CDF) and its diacetate promoiety (CDFDA) was studied in isolated perfused rat livers. Livers from Wistar wild-type and multidrug resistance-associated protein (Mrp)2-deficient (TR Ϫ ) rats were perfused with CDF in the presence or absence of probenecid. Probenecid decreased the recovery of CDF in bile ϳ4-fold in wild-type livers (65 Ϯ 8% versus 15 Ϯ 2% of dose over 2 h). In livers from TR Ϫ rats, CDF was not excreted into bile and probenecid decreased perfusate CDF concentrations in a concentration-dependent manner, in part due to inhibition of Mrp3. Plasma membrane vesicles from rat Mrp2-or Mrp3-transfected Sf9 cells were used to confirm that CDF is a substrate for Mrp2 and Mrp3; probenecid inhibited the transport of CDF by Mrp2 and Mrp3 in a concentration-dependent manner.CDF uptake in collagen sandwich-cultured rat hepatocytes was temperature-dependent and saturable (K m ϭ 22 Ϯ 10 M; V max ϭ 97 Ϯ 9 pmol/min/mg protein). Uptake of CDF in sandwich-cultured rat hepatocytes was impaired significantly by bromosulfophthalein, a substrate for organic anion-transporting polypeptides (Oatps), but was not modulated by specific Oatp2 or organic anion transporter (Oat) substrates. CDFDA uptake was not saturable, temperature-dependent, or impaired by inhibitors. The hydrolysis of CDFDA to CDF is mediated by basic pH and esterases in biological media. CDFDA passively diffuses into hepatocytes where it is hydrolyzed to CDF. In contrast, CDF appears to be taken up by Oatp-mediated transport into rat hepatocytes and effluxed via Mrp2 into bile and via Mrp3 into sinusoidal blood.
This study demonstrated that the long-acting naltrexone formulation was well tolerated, displayed predictable pharmacokinetics, and resulted in no meaningful drug accumulation upon multiple dosing. Intramuscular administration avoids first-pass metabolism and changes the exposure ratio of 6beta-naltrexol to naltrexone compared with oral administration. By providing continuous exposure to naltrexone for several weeks following IM injection, this long-acting naltrexone formulation may offer therapeutic benefit to those patients who experience difficulty adhering to the daily administration schedule necessitated by oral naltrexone therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.