The field of cancer research is famous for its incremental steps in improving therapy. The consistent but slow rate of improvement is greatly due to its meticulous use of consistent cancer biology models. However, as we enter an era of increasingly personalized cancer care, including chemo and radiotherapy, our cancer models must be equally able to be applied to all individuals. Patient-derived organoid (PDO) and organ-in-chip (OIC) models based on the micro-physiological bioengineered platform have already been considered key components for preclinical and translational studies. Accounting for patient variability is one of the greatest challenges in the crossover from preclinical development to clinical trials and patient derived organoids may offer a steppingstone between the two. In this review, we highlight how incorporating PDO’s and OIC’s into the development of cancer therapy promises to increase the efficiency of our therapeutics.
Radiation-induced loss of the hematopoietic stem cell progenitor population compromises bone marrow regeneration and development of mature blood cells. Failure to rescue bone marrow functions results in fatal consequences from hematopoietic injury, systemic infections, and sepsis. So far, bone marrow transplant is the only effective option, which partially minimizes radiation-induced hematopoietic toxicities. However, a bone marrow transplant will require HLA matching, which will not be feasible in large casualty settings such as a nuclear accident or an act of terrorism. In this study we demonstrated that human peripheral blood mononuclear cell-derived myeloid committed progenitor cells can mitigate radiation-induced bone marrow toxicity and improve survival in mice. These cells can rescue the recipient’s hematopoietic stem cells from radiation toxicity even when administered up to 24 h after radiation exposure and can be subjected to allogenic transplant without GVHD development. Transplanted cells deliver sEVs enriched with regenerative and immune-modulatory paracrine signals to mitigate radiation-induced hematopoietic toxicity. This provides a natural polypharmacy solution against a complex injury process. In summary, myeloid committed progenitor cells can be prepared from blood cells as an off-the-shelf alternative to invasive bone marrow harvesting and can be administered in an allogenic setting to mitigate hematopoietic acute radiation syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.