Background: The consumption of EPA (Eicosapentaenoic acid), and DHA (docosahexaenoic acid), from fish oil, in the long run, has been observed to have a positive impact on patients with coronary heart disease. Fish oil products, with so much EPA and DHA content are available, and have very variable prices. Therefore, as a therapy to be used for long-term treatment, the cost factor is to be considered.Design and methods: This study analyzed the content of EPA and DHA, using GC-MS. The sample to be analyzed was the fish oil that has the lowest price (Product A1), and that of the highest (Product A2). Furthermore, the macroscopic analysis was performed, by observing the physical form including organoleptic and qualitative tests, by reading the fragments identified by EPA and DHA.Results: Clinical trials were conducted on patients (about 46 people), with risk factors and dyslipidemia. Product A1 showed EPA at tR= 15.574 min (relative%= 88.49%, similarity= 95%), and DHA at tR= 21.714 min (relative%= 88.92%, similarity= 93%). Product A2 showed EPA at tR= 28.719 min (relative%= 22.58%, similarity= 89%), and DHA at tR= 32.327 min (relative%= 22.87%, similarity= 90%), which meant that both had EPA and DHA contents, in accordance with their labels. Both products were confirmed to reduce total cholesterol in 4weeks (p=0.000, p= 0.000), with no significant difference in their effectiveness (p=0.652).Conclusion: The results showed that both the A1 and A2 products, had the EPA and DHA contents in accordance with their respective labels. However, with the A2 product having a percentage relatively higher than that of the A1 brand, both are equally very effective.
Orthosiphon stamineus is widely used as an ingredient in traditional medicine and functional food partially for its main active compound, sinensetin. Plant growth and sinensetin contents are sensitive to many variables, including phytogeographical profiles. This study sought to evaluate the quality of O. stamineus obtained from nine locations in Indonesia, predicated on sinensetin levels assessed using TLC-densitometry. Thin Layer Chromatography (TLC) was conducted with silica gel 60 F 254 as the stationary phase and toluene: ethyl acetate (5:7) and a drop of formic acid for every 10 ml of that solvent mixture as the mobile phase and was analyzed without a derivatization reagent. The created method proved uncomplicated and satisfied the specificity parameters, as indicated by the identical UV spectrum shared between the sinensetin standard and sample (λ max = 334 nm). Also, it showed good linearity for sinensetin in the range of 14.5-87 ng/band (r = 0.9886). Limits of detection and limits of quantification were 9.03116 and 27.36717 ng/band, respectively. In addition, the method possessed good intra-and interday precision (marked by Relative Standard Deviations (RSDs) of 1.65%-6.47% and 4.97%) and accuracy (95.86, 120.18, and 82.44% recoveries in standard addition with threelevel solutions). Of the 14 samples, sinensetin was undetected in two but found in various concentrations in the other 12 samples, from 0.0238 to 0.1533 mg/g. Using a sample from the Tawangmangu area as a reference, three groups of samples were formed: those with lower sinensetin contents (Jakarta Selatan, Lamongan, Jombang, and Sampang), higher sinensetin contents (Surabaya, Mojokerto, Kediri, and Kotabaru), and similar sinensetin contents as the reference sample (Batu, Gresik, and Madiun). The TLC-densitometry designed in this study is straightforward but satisfies the validation parameters; thus, it can be used to qualitatively and quantitatively analyze sinensetin in O. stamineus. Overall, O. stamineus in different phytogeographical zones in Indonesia has varying levels of sinensetin.
Black garlic is produced by processing multi-bulb garlic (Allium sativum) or single-bulb garlic in high temperature and high humidity for several days. Black garlic has many health benefits, such as an antioxidant activity resulting from its compound, including groups of flavonoid and phenolic compounds. This study aimed to analyze the effect of aging time on multi-bulb and single-bulb black garlic on the content of total phenolic, flavonoid, and antioxidant activity. Black garlic was processed at a 60-70°C heating temperature and 70-80% relative humidity for 25 days. Determination of total phenol and flavonoid contents was conducted using spectrophotometric methods with gallic acid as a standard of total phenolic and quercetin as a standard of flavonoid, while the antioxidant activity was determined by DPPH radical reduction. The results showed that total phenolic contents (% w/w GAE), flavonoids contents (% w/w QE), and EC50 values at 0 until day 25 increased on a particular day in multi-bulb and single-bulb black garlic. The optimal total phenolic content of both black garlic was obtained by heating for 20 days, flavonoid content of multi-bulb garlic for 10 days, and single-bulb black garlic for 15 days. Highest antioxidant activity was obtained on days 20 and 25 for single-bulb black garlic and multi-bulb black garlic, respectively. The aging time of black garlic affects total phenolic, flavonoid content, and antioxidant activity. In general, longer processing time caused an increase in the total phenolic content, flavonoid content, and antioxidant activity of both black garlics. Multi-bulb black garlic showed higher phenolic or flavonoid content and antioxidant activity than single-bulb black garlic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.