SummaryA novel methodology is presented for reconstructing the Eulerian number density field of dispersed gas‐droplet flows modelled using the fully Lagrangian approach (FLA). In this work, the nonparametric framework of kernel regression is used to accumulate the FLA number density contributions of individual droplets in accordance with the spatial structure of the dispersed phase. The high variation which is observed in the droplet number density field for unsteady flows is accounted for by using the Eulerian‐Lagrangian transformation tensor, which is central to the FLA, to specify the size and shape of the kernel associated with each droplet. This procedure enables a high level of structural detail to be retained, and it is demonstrated that far fewer droplets have to be tracked in order to reconstruct a faithful Eulerian representation of the dispersed phase. Furthermore, the kernel regression procedure is easily extended to higher dimensions, and inclusion of the droplet radius within the phase space description using the generalised fully Lagrangian approach (gFLA) additionally enables statistics of the droplet size distribution to be determined for polydisperse flows. The developed methodology is applied to a range of one‐dimensional and two‐dimensional steady‐state and transient flows, for both monodisperse and polydisperse droplets, and it is shown that kernel regression performs well across this variety of cases. A comparison is made against conventional direct trajectory methods to determine the saving in computational expense which can be gained, and it is found that times fewer droplet realisations are needed to reconstruct a qualitatively similar representation of the number density field.
A novel methodology is presented for reconstructing the Eulerian number density field of dispersed gasdroplet flows modelled using the Fully Lagrangian Approach (FLA). In this work, the nonparametric framework of kernel regression is used to accumulate the FLA number density contributions of individual droplets in accordance with the spatial structure of the dispersed phase. The high variation which is observed in the droplet number density field for unsteady flows is accounted for by using the Eulerian-Lagrangian transformation tensor, which is central to the FLA, to specify the size and shape of the kernel associated with each droplet. This procedure enables a high level of structural detail to be retained, and it is demonstrated that far fewer droplets have to be tracked in order to reconstruct a faithful Eulerian representation of the dispersed phase. Furthermore, the kernel regression procedure is easily extended to higher dimensions, and inclusion of the droplet radius within the phase space description additionally enables the droplet size distribution and its statistics, such as average and variance, to be determined for polydisperse flows. The developed methodology is applied to a range of 1D and 2D steady-state and transient flows, for both monodisperse and polydisperse droplets, and it is shown that kernel regression performs well across this variety of cases. A comparison is made against conventional direct trajectory methods to determine the saving in computational expense which can be gained, and it is found that 10 3 times fewer droplet realisations are needed to reconstruct a qualitatively similar representation of the number density field in which the absolute error is generally below 10 −1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.