Sodium channels posses receptor sites for many neurotoxins, of which several groups were shown to inhibit sodium current inactivation. Receptor sites that bind ␣-and ␣-like scorpion toxins are of particular interest since neurotoxin binding at these extracellular regions can affect the inactivation process at intramembranal segments of the channel. We examined, for the first time, the interaction of different scorpion neurotoxins, all affecting sodium current inactivation and toxic to mammals, with ␣-scorpion toxin receptor sites on both mammalian and insect sodium channels. As specific probes for rat and insect sodium channels, we used the radiolabeled ␣-scorpion toxins AaH II and Lqh␣IT, the most active ␣-toxins on mammals and insect, respectively. We demonstrate that the different scorpion toxins may be classified to several groups, according to their in vivo and in vitro activity on mammalian and insect sodium channels. Analysis of competitive binding interaction reveal that each group may occupy a distinct receptor site on sodium channels. The ␣-mammal scorpion toxins and the anti-insect Lqh␣IT bind to homologous but not identical receptor sites on both rat brain and insect sodium channels. Sea anemone toxin ATX II, previously considered to share receptor site 3 with ␣-scorpion toxins, is suggested to bind to a partially overlapping receptor site with both AaH II and Lqh␣IT. Competitive binding interactions with other scorpion toxins suggest the presence of a putative additional receptor site on sodium channels, which may bind a unique group of these scorpion toxins (Bom III and IV), active on both mammals and insects. We suggest the presence of a cluster of receptor sites for scorpion toxins that inhibit sodium current inactivation, which is very similar on insect and rat brain sodium channels, in spite of the structural and pharmacological differences between them. The sea anemone toxin ATX II is also suggested to bind within this cluster.
At least six topologically separated neurotoxin receptor sites have been identified on sodium channels that reveal strong allosteric interactions among them. We have studied the allosteric modulation induced by veratridine, binding to receptor site 2, and brevetoxin PbTx-1, occupying receptor site 5, on the binding of alpha-scorpion toxins at receptor site 3, on three different neuronal sodium channels: rat brain, locust, and cockroach synaptosomes. We used 125I-AaH II, the most active alpha-scorpion toxin on vertebrates, and 125I-Lqh alpha IT, shown to have high activity on insects, as specific probes for receptor site 3 in rat brain and insect sodium channels. Our results reveal that brevetoxin PbTx-1 generates three types of effects at receptor site 3:1) negative allosteric modulation in rat brain sodium channels, 2) positive modulation in locust sodium channels, and 3) no effect on cockroach sodium channel. However, PbTx-1 activates sodium channels in cockroach axon similarly to its activity in other preparation. Veratridine positively modulates both rat brain and locust sodium channels but had no effect on alpha-toxin binding in cockroach. The dramatic differences in allosteric modulations in each sodium channel subtype suggest structural differences in receptor sites for PbTx-1 and/or at the coupling regions with alpha-scorpion toxin receptor sites in the different sodium channels, which can be detected by combined application of specific channel modifiers and may elucidate the dynamic gating activity and the mechanism of allosteric interactions among various neurotoxin receptors.
We have constructed a cDNA library from venom glands of the scorpion Buthus occitanus tunetanus and cloned a DNA sequence that encodes an α‐toxin. This clone was efficiently expressed in Escherichia coli as a fusion protein with two Ig‐binding (Z) domains of protein A from Staphylococcus aureus. After CNBr treatment of the fusion protein and HPLC purification, we obtained approximately 1 mg recombinant α‐toxin/I bacterial culture. The toxin, called Bot XIV, displays no toxicity towards mammals but is active towards insects as shown by its paralytic activity against Blatella germanica cockroach and by electrophysiological studies on Periplaneta americana cockroaches. The Bot XIV protein fused to two Z domains is highly immunogenic in mice and induces production of antisera that specifically recognize and neutralize highly toxic components that had been injected into mice. This fusion protein could be very useful for development of potent protective antisera against scorpion venoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.