In this paper, dispersion energies of Wannier–Mott, Frenkel and mixed exciton formation at the interface in nanocomposite organic–inorganic parabolic quantum dots are investigated theoretically taking account of the interaction between the two excitonic states and electric field effect. Illustration is given for three nanocomposites highly studied experimentally, such as organic P3HT combined respectively with inorganic (CdSe, ZnSe, ZnO) parabolic quantum dots. It is shown that the parameter governing the interaction between the individual exciton states depends on the inorganic quantum dot and can be controlled by the electric field. The results are consistent with the available experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.