We tested the hypothesis that the nuclear progesterone receptor (nPR) is involved in respiratory control and mediates the respiratory stimulant effect of progesterone. Adult female mice carrying a mutation in the nPR gene (PRKO mice) and wild-type controls (WT) were implanted with an osmotic pump delivering vehicle or progesterone (4 mg/kg/day). The mice were instrumented with EEG and neck EMG electrodes connected to a telemetry transmitter. The animals were placed in a whole body plethysmograph 7 days after surgery to record ventilation, metabolic rate, EEG and neck EMGs for 4 consecutive hours. The animals were exposed to hypercapnia (5% CO2), hypoxia (12% O2) and hypoxic-hypercapnia (5% CO2+12% O2–5 min each) to assess chemoreflex responses. EEG and EMG signals were used to characterize vigilance states (e.g., wake, non-REM, and REM sleep). PRKO mice exhibited similar levels of minute ventilation during non-REM and REM sleep, and higher frequencies of sighs and post-sigh apneas during non-REM sleep compared to WT. Progesterone treatment increased minute ventilation and metabolic rate in WT and PRKO mice during non-REM sleep. In WT mice, but not in PRKO mice, the ventilation under hypercapnia and hypoxic hypercapnia was enhanced after progesterone treatment. We conclude that the nPR reduces apnea frequency during non-REM sleep and enhances chemoreflex responses to hypercapnia after progesterone treatment. These results also suggest that mechanisms other than nPR activation increase metabolic rate in response to progesterone treatment in adult female mice.
We tested the hypothesis that membrane progesterone receptors (mPR) contribute to respiratory control in adult male and female mice. Mice were implanted with osmotic minipumps for continuous infusion of small interfering RNA (siRNA) directed against mPRα, mPRβ, or a control solution in the fourth ventricle (to target brain stem respiratory areas) for 14 days. We then performed respiratory and metabolic recordings by whole body plethysmography at rest and in response to hypoxia (12% O) or hypercapnia (5% CO, 5 min each). For each treatment, we have verified with immunohistochemistry that the staining intensity of mPRα or mPRβ in the brain stem is decreased. At rest, the siRNA against mPRα and mPRβ increased respiratory frequency in males only. The siRNA against mPRβ almost tripled the frequency of apneas in male and in female mice, while the siRNA against mPRα had no effect. Regarding respiratory chemoreflex, the siRNA against mPRβ suppressed the response to hypoxia in male and female mice and reduced by ∼50% the response to hypercapnia, while the siRNA against mPRα had more limited effects. Interestingly, control females had higher ventilatory response to hypoxia and hypercapnia than males, and these sex-specific effects were suppressed by the siRNA against mPRβ, whereas they were still present after treatment with the siRNA against mPRα. We conclude that mPRβ reduces apnea frequency in male and female mice and establishes sex-specific ventilatory chemoreflex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.