Purpose This paper studies the preemptive scheduling problem of independent jobs on identical machines. The purpose of this paper is to minimize the makespan under the imposed constraints, namely, the ones that relate the transportation delays which are required to transport a preempted job from one machine to another. This study considers the case when the transportation delays are variable. Design/methodology/approach The contribution is twofold. First, this study proposes a new linear programming formulation in real and binary decision variables. Then, this study proposes and implements a solution strategy, which consists of two stages. The goal of the first stage is to obtain the best machines order using a local search strategy. For the second stage, the objective is to determine the best possible sequence of jobs. To solve the preemptive scheduling problem with transportation delays, this study proposes a heuristic and two metaheuristics (simulated annealing and variable neighborhood search), each with two modes of evaluation. Findings Computational experiments are presented and discussed on randomly generated instances. Practical implications The study has implications in various industrial environments when the preemption of jobs is allowed. Originality/value This study proposes a new linear programming formulation for the problem with variable transportation delays as well as a corresponding heuristic and metaheuristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.