Inspired by the dicationic nature of the electrophilic fluorinating reagent, Selectfluor (1), we rationally designed a series of dicarboxylic acid precatalysts (2), which, when deprotonated, act as anionic phase-transfer catalysts for asymmetric fluorination of alkenes. Among them, 2a having the shortest linker moiety efficiently catalyzed unprecedented 6-endo-fluoro-cyclization of various allylic amides, affording fluorinated dihydrooxazine compounds with high enantioselectivity (up to 99% ee). In addition to cyclic substrates, acyclic trisubstituted alkenes underwent the reaction with good diastereoselectivity, whereas low diastereoselectivity was observed for linear disubstituted alkenes. Results suggest that the reaction proceeds via a fluoro-carbocation intermediate.
Asymmetric dearomatizing fluorocyclization of indole derivatives was investigated using a dicarboxylate phase-transfer catalyst. This reaction proceeds under mild reaction conditions to provide fluoropyrroloindoline derivatives in a highly enantioselective manner. Various substitution patterns on the indole ring are well tolerated. To facilitate the reaction and ensure reproducibility, the addition of water is essential, and its possible role is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.