This paper proposes a novel method for generating compact answers to open-domain why-questions, such as the following answer, “Because deep learning technologies were introduced,” to the question, “Why did Google’s machine translation service improve so drastically?” Although many works have dealt with why-question answering, most have focused on retrieving as answers relatively long text passages that consist of several sentences. Because of their length, such passages are not appropriate to be read aloud by spoken dialog systems and smart speakers; hence, we need to create a method that generates compact answers. We developed a novel neural summarizer for this compact answer generation task. It combines a recurrent neural network-based encoderdecoder model with stacked convolutional neural networks and was designed to effectively exploit background knowledge, in this case a set of causal relations (e.g., “[Microsoft’s machine translation has made great progress over the last few years]effect since [it started to use deep learning.]cause”) that was extracted from a large web data archive (4 billion web pages). Our experimental results show that our method achieved significantly better ROUGE F-scores than existing encoder-decoder models and their variations that were augmented with query-attention and memory networks, which are used to exploit the background knowledge.
This paper proposes a neural network-based method for generating compact answers to open-domain why-questions (e.g., "Why was Mr. Trump elected as the president of the US?"). Unlike factoid question answering methods that provide short text spans as answers, existing work for why-question answering have aimed at answering questions by retrieving relatively long text passages, each of which often consists of several sentences, from a text archive. While the actual answer to a why-question may be expressed over several consecutive sentences, these often contain redundant and/or unrelated parts. Such answers would not be suitable for spoken dialog systems and smart speakers such as Amazon Echo, which receive much attention in these days. In this work, we aim at generating non-redundant compact answers to why-questions from answer passages retrieved from a very large web data corpora (4 billion web pages) by an already existing open-domain why-question answering system, using a novel neural network obtained by extending existing summarization methods. We also automatically generate training data using a large number of causal relations automatically extracted from 4 billion web pages by an existing supervised causality recognizer. The data is used to train our neural network, together with manually created training data. Through a series of experiments, we show that both our novel neural network and auto-generated training data improve the quality of the generated answers both in ROUGE score and in a subjective evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.