Early rejection is a critical issue to be overcome to achieve successful islet transplantation. NLRP3 inflammasome is a protein complex that mediates the maturation of pro-interleukin (IL)-1β and pro-IL-18 to IL-1β and IL-18, respectively, which induce cellular death. Here, we investigated the impact of NLRP3 inflammasome and the effect of its inhibition by MCC950 in a rodent model of islet transplantation. We assessed the therapeutic effects of MCC950, a specific inhibitor of NLRP3 inflammasome, on gene expression, islet survival ratio and viability, and islet transplantation in mice. NLRP3 inflammasome-related gene (Nlrp3 and Il1b) expression was upregulated in islets stimulated with proinflammatory cytokines and suppressed when incubated with MCC950. Survival ratio and viability of incubated islets were reduced by cytokine stimulation and improved by MCC950. Regarding islet transplantation, the number of apoptotic cells in transplanted islets was reduced by MCC950. Furthermore, the expression of IL-1β in transplanted islets, migration of macrophages around islets, and fluctuation of blood glucose levels were suppressed by MCC950. Our study revealed that NLRP3 inflammasome worsened the therapeutic outcomes of islet transplantation and that MCC950 administration improved glycaemic control in syngeneic mice that underwent islet transplantation by inhibiting inflammation, which suppressed islet death.
The extraction of luteolin and apigenin from the leaves of Perilla frutescens (L.) Britt. by liquid carbon dioxide (CO 2 ) was carried out at 5, 20 and 25 ºC. The extraction pressure was from 8.5 to 14 MPa. The extraction yields were compared with yields obtained by other solvent extraction methods, such as supercritical CO 2 extraction and conventional aqueous alcohol extraction. We conducted qualitative and quantitative analyses for luteolin and apigenin in the extract by HPLC and analyzed the extraction behavior.The effect of two operating parameters, temperature and pressure of liquid CO 2 , on the extraction yield was investigated using the single-factor method. The yields of luteolin and apigenin in the extraction were significantly improved by the operating temperature, whereas a change in the selectivity of the extract was not observed.
The extraction of xanthones, such as α-mangostin from the pericarp of mangosteen (Garcinia mangostana Linn.) by supercritical fluid extraction (SFE), for which the solvent was carbon dioxide (CO 2 ), was carried out at 35, 40 and 50 ºC. The extraction pressure was from 10 to 20 MPa. In order to enhance the yield of the extraction, ethanol was added as an entrainer. The yields of xanthones, such as α-mangostin in the extraction were significantly improved, whereas a change in the selectivity of the extract was not observed. We also conducted qualitative and quantitative analyses for xanthones in the extract by HPLC, and analyzed the extraction behavior. The effect of three operating parameters, such as temperature, pressure and the mole fraction of ethanol in a supercritical solution of CO 2 on the extraction yield was investigated using the single-factor method.
The present study reports on the ultrasonic enhancement of the liquid carbon dioxide (CO2) extraction of luteolin and apigenin from the leaves of Perilla frutescens (L.) Britt., to which ethanol is added as a cosolvent. The purpose of this research is also to investigate the effects of the particle size, temperature, pressure, irradiation power, irradiation time, and ethanol content in the liquid CO2 solution on the extraction yield using single-factor experiments. We qualitatively and quantitatively analyzed the yields in the extract using HPLC (high-performance liquid chromatography). The liquid CO2 mixed with ethanol was used at temperatures of 5, 20 and 25 °C with extraction pressures from 8 to 14 MPa. The yields of luteolin and apigenin in the extraction were clearly enhanced by the ultrasound irradiation, but the selectivity of the extract was not changed. The yields of luteolin and apigenin in the extract were also significantly improved by adjusting the operating temperature, the irradiation time, and the ethanol content in the liquid CO2 solution, but no change in the selectivity of the extract was observed.
Alpha lipoic acid (ALA), an active substance in anti-aging products and dietary supplements, need to be masked with an edible polymer to obscure its unpleasant taste. However, the high viscosity of the ALA molecules prevents them from forming microcomposites with masking materials even in supercritical carbon dioxide (scCO2). Therefore, the purpose of this study was to investigate and develop a novel production method for microcomposite particles for ALA in hydrogenated colza oil (HCO). Microcomposite particles of ALA/HCO were prepared by using a novel gas-saturated solution (PGSS) process in which the solid-dispersion method is used along with stepwise temperature control (PGSS-STC). Its high viscosity prevents the formation of microcomposites in the conventional PGSS process even under strong agitation. Here, we disperse the solid particles of ALA and HCO in scCO2 at low temperatures and change the temperature stepwise in order to mix the melted ALA and HCO in scCO2. As a result, a homogeneous dispersion of the droplets of ALA in melted HCO saturated with CO2 is obtained at high temperatures. After the rapid expansion of the saturated solution through a nozzle, microcomposite particles of ALA/HCO several micrometers in diameter are obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.