Photoacoustic (PA) imaging is a new imaging technology that can non-invasively visualize blood vessels and body hair in 3D. It is useful in cosmetic surgery for detecting body hair and computing metrics such as the number and thicknesses of hairs. Previous supervised body hair detection methods often do not work if the imaging conditions change from training data. We propose an unsupervised hair detection method. Hair samples were automatically extracted from unlabeled samples using prior knowledge about spatial structure. If hair (positive) samples and unlabeled samples are obtained, Positive Unlabeled (PU) learning becomes possible. PU methods can learn a binary classifier from positive samples and unlabeled samples. The advantage of the proposed method is that it can estimate an appropriate decision boundary in accordance with the distribution of the test data. Experimental results using real PA data demonstrate that the proposed approach effectively detects body hairs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.