Background A hybrid emergency room (ER) is defined as an emergency unit with four functions—performing resuscitation, computed tomography (CT), surgery, and angiography. However, the safety and efficacy of performing CT in a hybrid ER are unclear in primary surveys. Therefore, this study aimed to evaluate the safety and clinical effects of hybrid ERs. Methods This retrospective observational study used data from the Shimane University Hospital Trauma Database from January 2016 to February 2019. Hospitalized patients with severe trauma and an injury severity score of ≥ 16 were divided into the non-hybrid ER group (n = 134) and the hybrid ER group (n = 145). The time from arrival to CT and interventions and the number of in-hospital survivors, preventable trauma deaths (PTD), and unexpected survivors (US) were assessed in both groups. Further, the amount of blood transfused was compared between the groups using propensity score matching. Results The time from arrival to CT and interventions was significantly reduced in the hybrid ER group compared to that in the non-hybrid ER group (25 vs. 6 min; p < 0.0001 and 101 vs. 41 min; p = 0.0007, respectively). There was no significant difference in the rate of in-hospital survivors (96.9% vs. 96.3%; p = 0.770), PTD (0% vs. 0%), and US (9.0 vs. 6.2%; p = 0.497) between the groups. The amount of blood transfused was significantly lower in the hybrid ER group than in the non-hybrid ER group (whole blood 14 vs. 8, p = 0.004; red blood cell 6 vs. 2, p = 0.012; fresh frozen plasma 9 vs. 6, p = 0.021). This difference was maintained after propensity score matching (whole blood 28 [10–54] vs. 6 [4–16.5], p = 0.015; RBC 8 [2.75–26.5] vs. 2 [0–8.5], p = 0.020, 18 [5.5–27] vs. 6 [3.5–7.5], p = 0.057). Conclusions The study results suggest that trauma treatment in a hybrid ER is as safe as conventional treatment performed in a non-hybrid ER. Further, hybrid ERs, which can reduce the time for trauma surveys and treatment, do not require patient transfer and can reduce the amount of blood transfused during resuscitation.
The recent advent of endoscopy has enabled the endoscopic submucosal dissection (ESD) of superficial nonampullary duodenal epithelial tumors. However, the substantially thin wall and presence of bile and pancreatic juice make it technically difficult to perform duodenal ESD without perforation, which leads to lethal complications. The present study evaluated the efficacy of autologous myoblast sheet transplantation for the prevention of late perforation after duodenal ESD in a porcine model. Two weeks before ESD, skeletal muscle was surgically excised from the femur of pigs, and myoblasts were isolated and seeded in temperature-responsive culture dishes to prepare sheets. Immediately after ESD, the autologous myoblast sheets were attached to the serosal surface at the ESD site with omentopexy. The pigs were divided into two groups: the autologous myoblast sheet group ( n = 5), where the myoblast cell sheet was attached to the ESD ulcer part from the duodenal serous side, and the Omentum group ( n = 5), where only the omentum was used. The pigs were sacrificed and analyzed macroscopically and histologically on postoperative day 3. The macroscopic examination of the abdominal cavity revealed perforation in the ESD ulcer area and leakage of bile in the Omentum group but no perforation in the Sheet group. A histopathological examination revealed that continuity of the duodenal wall at the ESD site was maintained with dense connective tissue in the Sheet group. In conclusion, autologous myoblast sheets were useful for preventing perforation after duodenal ESD.
BackgroundRegardless of developments in thoracoscopic esophagectomy (TE), postoperative complications relative to gastric conduit reconstruction are common after esophagectomy. The aim of the present study was to evaluate the predictive factors of major complications related to gastric conduit after TE.MethodsFrom 2006 to 2015, 75 patients with esophageal cancer who underwent TE were evaluated to explore the predictive factors of major postoperative complications related to gastric conduit.ResultsPatients with major complications related to gastric conduit had a significantly longer postoperative hospital stay than patients without these complications (P < 0.01). Multivariate analysis demonstrated that three-field lymph node dissection (3FLND) and high serum levels of creatine phosphokinase (CPK) and C-reactive protein (CRP) at 1 postoperative day (1POD) after TE were significant predictive factors of major complications related to gastric conduit [odds ratio (OR) 5.37, 95% confidence interval (CI) 1.41–24.33, P = 0.02; OR 5.40, 95% CI 1.60–20.20, P < 0.01; OR 5.07, 95% CI 1.47–20.25, P = 0.01, respectively]. The incidence rates of major complications related to gastric conduit for 0, 1, 2, and 3 predictive factors were 5.3%, 18.8%, 58.8%, and 85.7%, respectively (P < 0.01).ConclusionsTwo or more factors in 3FLND and the high levels of CPK and CRP at 1POD after TE were identified as the risk model for major complications related to gastric conduit after TE.Trial registrationUMIN Clinical Trials Registry, ID: UMIN000024436, Registered date: Oct/17/2016.
Objectives Duodenal endoscopic submucosal dissection (ESD) for superficial non‐ampullary duodenal epithelial tumors has a significant incidence rate of delayed perforation. Although several methods have been proposed to prevent delayed perforation, the most appropriate methods remain unclear. Currently, there is no appropriate animal model to validate methods for preventing duodenal delayed perforation. This study aimed to establish an in‐vivo porcine delayed perforation model after duodenal submucosal dissection. Methods Two porcine models underwent either ESD or surgical submucosal dissection. In the surgical dissection model, an inverted duodenal mucosa was resected with electrosurgical energy. In the ESD model, a gauze was placed behind the duodenum with grasped transverse part to improve endoscopic maneuverability. The mucosal defects after dissection were treated with omental coverage without suture in both models. All models were euthanized 0–5 days after procedure. Body weight; resection size; procedure dissection time; presence of intraoperative perforation and delayed perforation; and adhesion score were assessed. Results There were no significant differences in body weight and adhesion score between the two models. Resection size was significantly larger in the surgical dissection models than in the ESD models (19 mm vs 14.3 mm, P < 0.01). Procedure time was significantly longer in the ESD models than in the surgical models (45.2 minutes vs 4.5 minutes, P < 0.01). Delayed perforation rates in the surgical dissection models and the ESD models were 0% (0/5) and 100% (5/5), respectively (P < 0.01). Conclusions This study indicated that our in‐vivo porcine duodenal ESD model is beneficial to evaluate a prevention strategy for delayed perforation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.