Small particles attached to liquid surfaces arise in many products and processes, including crude-oil emulsions and food foams and in flotation, and there is a revival of interest in studying their behaviour. Colloidal particles of suitable wettability adsorb strongly to liquid-liquid and liquid-vapour interfaces, and can be sole stabilizers of emulsions and foams, respectively. New materials, including colloidosomes, anisotropic particles and porous solids, have been prepared by assembling particles at such interfaces. Phase inversion of particle-stabilized emulsions from oil in water to water in oil can be achieved either by variation of the particle hydrophobicity (transitional) or by variation of the oil/water ratio (catastrophic). Here we describe the phase inversion of particle-stabilized air-water systems, from air-in-water foams to water-in-air powders and vice versa. This inversion can be driven either by a progressive change in silica-particle hydrophobicity at constant air/water ratio or by changing the air/water ratio at fixed particle wettability, and has not been observed in the corresponding systems stabilized by surfactants. The simplicity of the work is that this novel inversion is achieved in a single system. The resultant materials in which either air or water become encapsulated have potential applications in the food, pharmaceutical and cosmetics industries.
A change for the wetter: The effect of temperature T on the position of a sterically stabilized polystyrene latex particle adsorbed at an oil–water interface is described. Emulsions stabilized by such particle monolayers are oil‐in‐water at low T and water‐in‐oil at high T (see scheme). The results are also in line with the predicted change in the wettability of the particles in emulsions.
Oil (liquids with low surface tension and practically immiscible with water) drops can be dispersed in air if relatively oleophobic particles are available. However, such particles with oil‐repellent surfaces cannot simply be prepared by controlling the particle surface chemistry alone. Herein the preparation of oil‐in‐air materials (oil marbles, dry oils) by changing the wetting behavior of particles by tuning the oil properties, which allows the formation of the metastable Cassie–Baxter wetting state of particle assemblies on oil drop surfaces, is presented. The oil‐in‐air materials can be converted to air‐in‐oil materials (non‐aqueous foams) by tailoring the oil properties, as the robustness of the metastable Cassie–Baxter state of the particle assemblies critically depends on the particle wettability. This conversion implies the phase inversion of dispersed systems consisting of air and oils. It is also shown that particle‐stabilized non‐aqueous foams can be utilized as template to produce macroporous polymers.
Lightly cross-linked poly(4-vinylpyridine)-silica nanocomposite microgel particles have been recently reported to act as pH-responsive particulate emulsifiers [Fujii, S.; Read, E. S.; Armes, S. P.; Binks, B. P. Adv. Mater. 2005, 17, 1014]. In this work, the synthesis and performance of such nanocomposite microgel particles are studied in more detail. Scanning electron microscopy, dynamic light scattering, nitrogen microanalyses, thermogravimetric analysis, aqueous electrophoresis, and acid-base titration were used to characterize the nanocomposites in terms of their particle size and morphology, polymer and silica contents, surface compositions, and critical swelling pH, respectively. Depending on the polarity of the oil phase and the purity of the nanocomposite particles, either oil-in-water or water-in-oil emulsions could be prepared at pH 8-9, but not at pH 2-3. These emulsions were characterized in terms of their emulsion type, mean droplet diameter, and morphology using electrical conductivity, light diffraction, and both electron and optical microscopy. In some cases, rapid demulsification could be induced by lowering the solution pH: addition of acid led to protonation of the 4-vinylpyridine residues, which imparted cationic microgel character to the nanocomposite particles. Cross-linking of the nanocomposite microgel particles is essential for their optimum performance as a pH-responsive emulsifier, but unfortunately it is not sufficient to allow recycling.
Aqueous dispersions of lightly cross-linked poly(4-vinylpyridine)/silica nanocomposite microgel particles are used as a sole emulsifier of methyl myristate and water (1:1 by volume) at various pH values and salt concentrations at 20 degrees C. These particles become swollen at low pH with the hydrodynamic diameter increasing from 250 nm at pH 8.8 to 630 nm at pH 2.7. For batch emulsions prepared at pH 3.4, oil-in-water (o/w) emulsions are formed that are stable to coalescence but exhibit creaming. Below pH 3.3, however, these emulsions are very unstable to coalescence and rapid phase separation occurs just after homogenization (pH-dependent). The pH for 50% ionization of the pyridine groups in the particles in the bulk (pK(a)) was determined to be 3.4 by acid titration measurements of the aqueous dispersion. Thus, the charged swollen particles no longer adsorb at the oil-water interface. For continuous emulsions (prepared at high pH with the pH then decreased abruptly or progressively), demulsification takes place rapidly below pH 3.3, implying that particles adsorbed at the oil-water interface can become charged (protonated) and detached from the interface in situ (pH-responsive). Furthermore, at a fixed pH of 4.0, addition of sodium chloride to the aqueous dispersion increases the degree of ionization of the particles and batch emulsions are significantly unstable to coalescence at a salt concentration of 0.24 mol kg(-1). The degree of ionization of such microgel particles is a critical factor in controlling the coalescence stability of o/w emulsions stabilized by them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.