Three novel coelenterazine (CTZ) derivatives with extension at the C-6 position of the imidazopyrazinone structure show significant bioluminescence emission with known renilla luciferase variants, indicating a promising method to develop CTZ derivatives with superior optical properties compared to hitherto reported compounds.
Spectral overlaps among the multiple optical readouts commonly cause optical contamination in fluorescence and bioluminescence. To tackle this issue, we created five-different lineages of coelenterazine (CTZ) analogues designed to selectively illuminate a specific luciferase with unique luciferase selectivity. In the attempt, we found that CTZ analogues with ethynyl or styryl groups display dramatically biased bioluminescence to specific luciferases and pHs by modifying the functional groups at the C-2 and C-6 positions of the imidazopyradinone backbone of CTZ. The optical contamination-free feature was exemplified with the luciferase-specific CTZ analogues, which illuminated anti-estrogenic and rapamycin activities in a mixture of optical probes. This unique bioluminescence platform has great potential for specific and high throughput imaging of multiple optical readouts in bioassays without optical contamination.
The fabrication of artificial luciferases (ALucs) with unique optical properties has a fundamental impact on bioassays and molecular imaging. In this study, we developed a new lineage of ALucs with unique substrate preferences by extracting consensus amino acids from the alignment of 25 copepod luciferase sequences available in natural luciferase pools. The primary sequence was first created with a sequence logo generator resulting in a total of 11 sibling sequences. Phylogenetic analysis shows that the newly fabricated ALucs form an independent branch, genetically isolated from the natural luciferases, and from a prior series of ALucs produced by our laboratory using a smaller basis set. The new lineage of ALucs were strongly luminescent in living mammalian cells with specific substrate selectivity to native coelenterazine. A single-residue-level comparison of the C-terminal sequences of new ALucs reveals that some amino acids in the C-terminal ends are greatly influential on the optical intensities but limited in the color variance. The success of this approach guides on how to engineer and functionalize marine luciferases for bioluminescence imaging and assays.
Optical imaging of protein-protein interactions (PPIs) facilitates comprehensive elucidation of intracellular molecular events. We demonstrate an optical measure for visualizing molecular tension triggered by any PPI in mammalian cells. Twenty-three kinds of candidate designs were fabricated, in which a full-length artificial luciferase (ALuc) was sandwiched between two model proteins of interest, e.g., FKBP and FRB. One of the designs greatly enhanced the bioluminescence in response to varying concentrations of rapamycin. It is confirmed with negative controls that the elevated bioluminescence is solely motivated from the molecular tension. The probe design was further modified toward eliminating the C-terminal end of ALuc and was found to improve signal-to-background ratios, named "a combinational probe". The utilities were elucidated with detailed substrate selectivity, bioluminescence imaging of live cells, and different PPI models. This study expands capabilities of luciferases as a tool for analyses of molecular dynamics and cell signaling in living subjects.
Background : Bioluminescence imaging (BLI) is one of the most widely used optical platforms in molecular imaging, but it suffers from severe tissue attenuation and autoluminescence in vivo . Methods : Here, we developed a novel BLI platform on the basis of bioluminescence resonance energy transfer (BRET) for achieving a ~300 nm blue-to-near infrared shift of the emission (NIR-BRET) by synthesizing an array of 18 novel coelenterazine (CTZ) derivatives, named “Bottle Blue (BBlue)” and a unique iRFP-linked RLuc8.6-535SG fusion protein as a probe. Results : The best NIR-BRET was achieved by tuning the emission peaks of the CTZ derivatives to a Soret band of the iRFP. In mammalian cells, BBlue2.3, one of the CTZ derivatives, emits light that is ~50-fold brighter than DBlueC when combined with RLuc8.6-535SG, which shows stable BL kinetics. When we used a caged version of BBLue2.3, it showed a BL half decay time of over 60 minutes while maintaining the higher signal sensitivity. This NIR BL is sufficiently brighter to be used for imaging live mammalian cells at single cell level, and also for imaging metastases in deep tissues in live mice without generating considerable autoluminescence. A single-chain probe developed based on this BLI platform allowed us to sensitively image ligand antagonist-specific activation of estrogen receptor in the NIR region. Conclusion : This unique optical platform provides the brightest NIR BLI template that can be used for imaging a diverse group of cellular events in living subjects including protein‒protein interactions and cancer metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.