Abstract. The present study characterized the different hormonal responses to stress in the endocrine milieu with different circulating levels of prolactin (PRL) and examined the direct effects of PRL on adrenal steroidogenic responses to adrenocorticotropic hormone (ACTH) using experimentally induced hyperprolactinemia and hypoprolactinemia male rat models. Hyperprolactinemia was induced by transplantation of two adult female rat anterior pituitary glands under the kidney capsule for 2 weeks, and hypoprolactinemia was induced by daily subcutaneous injection of 2-Bromo-alphaErgocryptine (CB-154) for 2 weeks. Under stress conditions, the peak levels of ACTH were significantly higher in hypoprolactinemia than normal rats. Meanwhile, the peak levels of corticosterone and progesterone were significantly higher in hyperprolactinemia than in normal and hypoprolactinemia stressed rats. Results of in vitro experiments showed that adrenocortical cells in hyperprolactinemia exhibited higher basal levels of corticosterone and progesterone rats than normal and hypoprolactinemia rats. The stimulatory effect of ACTH on corticosterone and progesterone release was higher in hyperprolactinemia than hypoprolactinemia rats. In addition, PRL increased the stimulatory effect of ACTHinduced corticosterone secretion in all rat models. These results suggest that hypoprolactinemia and hyperprolactinemia rats exhibit marked differences in the response of their hypothalamic-pituitary-adrenal (HPA) axis during acute restrain stress. Additionally, these studies emphasize that the adrenal cortex might be more sensitive to ACTH stimulation in endocrine milieu with high levels of PRL resulting in high corticosterone and progesterone release.
The high-and low-avoidance animal (HAA and LAA respectively) strains of Hatano rats were originally selected and bred from Sprague-Dawley rats for their performance in the shuttle-box task. The present study focused on the activity of the hypothalamo-pituitary-adrenocortical (HPA) axis of HAA and LAA rats in response to restraint stress. The restraint stress induced an elevation in plasma concentrations of ACTH, prolactin, corticosterone and progesterone. Peak levels of plasma ACTH during stress conditions were significantly higher in HAA rats than in LAA rats, while peak levels of prolactin were significantly lower in HAA rats than in LAA rats. Under stress conditions, ACTH and prolactin synthesis in the anterior pituitary glands was significantly higher in HAA rats compared with LAA rats. The peak plasma concentrations of corticosterone, during restraint stress, were significantly higher in LAA rats compared with HAA rats. These results indicate that the response of the hypothalamo-pituitary axis to acute restraint stress is greater in HAA rats than in LAA rats, whereas the ACTH-induced adrenal response of corticosterone release is higher in LAA rats than in HAA rats. On the other hand, prolactin secretory activity is higher in LAA rats compared with HAA rats. These differences in endocrine responses to stress may be involved in the regulation of the avoidance responses in the shuttle-box task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.