We discuss the resummation of the large logarithmic terms appearing in the heavy quark effects on parton distribution functions inside the virtual photon. We incorporate heavy quark mass effects by changing the initial condition of the leading-order DGLAP evolution equation. In a certain kinematical limit, we recover the logarithmic terms of the next-to-leading order heavy quark effects obtained in the previous work. This method enables us to resum the large logarithmic terms due to heavy quark mass effects on the parton distributions in the virtual photon. We numerically calculate parton distributions using the formulae derived in this work, and discuss the property of the resummed heavy quark effects.
Photon structure functions in supersymmetric QCD are investigated in terms of the parton model where squark contributions are evaluated. We calculate the eight virtual photon structure functions by taking the discontinuity of the squark massive one-loop diagrams of the photon-photon forward amplitude. The model-independent positivity constraints derived from the Cauchy-Schwarz inequalities are satisfied by the squark parton model calculation and actually the two equality relations hold for the squark contribution. We also show that our polarized photon structure function g γ 1 for the real photon leads to the vanishing 1st moment sum rule, and the constraint |g γ 1 | ≤ F γ 1 is satisfied by the real photon. We also discuss a squark signature in the structure function W τ T T .
We investigate the virtual photon structure function in the supersymmetric QCD (SQCD), where we have squarks and gluinos in addition to the quarks and gluons. Taking into account the heavy particle mass effects to the leading order in QCD and SQCD we evaluate the photon structure function and numerically study its behavior for the QCD and SQCD cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.