Transgenic (Tg) mice overexpressing human wild-type alpha-synuclein in oligodendrocytes under the control of the 2,' 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) promoter are shown here to recapitulate features of multiple system atrophy (MSA), including the accumulation of filamentous human alpha-synuclein aggregates in oligodendrocytes linked to their degeneration and autophagocytosis of myelin. Significantly, endogenous mouse alpha-synuclein also accumulated in normal and degenerating axons and axon terminals in association with oligodendroglia and neuron loss and slowly progressive motor impairments. Our studies demonstrate that overexpression of alpha-synuclein in oligodendrocytes of mice results in MSA-like degeneration in the CNS and that alpha-synuclein inclusions in oligodendrocytes participate in the degeneration of neurons in MSA.
and the OPDM_LRP12 Study Group IMPORTANCE Repeat expansion of CGG in LRP12 has been identified as the causative variation of oculopharyngodistal myopathy (OPDM). However, to our knowledge, the clinicopathologic features of OPDM with CGG repeat expansion in LRP12 (hereafter referred to as OPDM_LRP12) remain unknown.OBJECTIVE To identify and characterize the clinicopathologic features of patients with OPDM_LRP12.
DESIGN, SETTING, AND PARTICIPANTSThis case series included 208 patients with a clinical or clinicopathologic diagnosis of oculopharyngeal muscular dystrophy (OPDM) from January 1, 1978, to December 31, 2020. Patients with GCN repeat expansions in PABPN1 were excluded from the study. Repeat expansions of CGG in LRP12 were screened by repeat primed polymerase chain reaction and/or Southern blot.MAIN OUTCOMES AND MEASURES Clinical information, muscle imaging data obtained by either computed tomography or magnetic resonance imaging, and muscle pathologic characteristics.RESULTS Sixty-five Japanese patients with OPDM (40 men [62%]; mean [SD] age at onset, 41.0 [10.1] years) from 59 families with CGG repeat expansions in LRP12 were identified. This represents the most common OPDM subtype among all patients in Japan with genetically diagnosed OPDM. The expansions ranged from 85 to 289 repeats. A negative correlation was observed between the repeat size and the age at onset (r 2 = 0.188, P = .001). The most common initial symptoms were ptosis and muscle weakness, present in 24 patients (37%). Limb muscle weakness was predominantly distal in 53 of 64 patients (83%), but 2 of 64 patients (3%) had predominantly proximal muscle weakness. Ptosis was observed in 62 of 64 patients (97%), and dysphagia or dysarthria was observed in 63 of 64 patients (98%). A total of 21 of 64 patients (33%) had asymmetric muscle weakness. Aspiration pneumonia was seen in 11 of 64 patients (17%), and 5 of 64 patients (8%) required mechanical ventilation. Seven of 64 patients (11%) developed cardiac abnormalities, and 5 of 64 patients (8%) developed neurologic abnormalities. Asymmetric muscle involvement was detected on computed tomography scans in 6 of 27 patients (22%) and on magnetic resonance imaging scans in 4 of 15 patients (27%), with the soleus and the medial head of the gastrocnemius being the worst affected. All 42 muscle biopsy samples showed rimmed vacuoles. Intranuclear tubulofilamentous inclusions were observed in only 1 of 5 patients.
CONCLUSIONS AND RELEVANCEThis study suggests that OPDM_LRP12 is the most frequent OPDM subtype in Japan and is characterized by oculopharyngeal weakness, distal myopathy that especially affects the soleus and gastrocnemius muscles, and rimmed vacuoles in muscle biopsy.
Dental pulp is an easily obtainable source of viable cells for potential use in peripheral nerve regeneration. We prepared artificial conditions for nerve regeneration using a silicone tube containing a collagen gel embedded with rat dental pulp cells, and we examined its effectiveness for repairing a gap in the rat facial nerve. Twelve days after transplantation, defective facial nerves connected with silicone tubes containing dental pulp cells were repaired more rapidly than control tubes containing the collagen gel alone. When a tube containing green fluorescent protein (GFP)-positive dental pulp cells was transplanted into a facial nerve gap in a GFP-negative rat, we observed regenerated nerves with GFP-positive cells at 2 weeks posttransplantation. The regenerated nerves included Tuj1-positive axons, RECA1 and GFP double-positive blood vessels, and S100 and GFP double-positive Schwann-like supportive cells. Osmium-toluidine blue staining revealed that the regenerated nerves contained myelinated fibers. Moreover, fluorescent retrograde tracing analysis by application of Fluoro-Gold into the regenerated nerves demonstrated the presence of Fluoro-Gold-positive motor neurons in the facial nucleus of the rat brain. These results suggest that the transplanted dental pulp cells formed blood vessels and myelinating tissue and contributed to the promotion of normal nerve regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.