The friction of filled rubber on a rough surface is mainly determined by the rubber viscoelasticity and the surface property of multiple-scale asperities that can be represented by the power spectral density of the surface profile (i.e., power spectrum of surface roughness). This paper investigates a prediction model of rubber friction on dry and wet surfaces with large roughness under lightly squeezing, and finds a high stationary friction coefficient that depends on sliding speed. To this end, we demonstrated friction testing at low velocities with carbon-black-filled rubber and a hard substrate having self-affine surface roughness. From the experiment results, we estimated the hysteresis friction coefficient related to energy dissipation resulting from cyclic deformations of the viscoelastic rubber by applying the theory developed by Persson [(J. Chem. Phys. 115, 3840 (2001)]. We discussed the additional factor, an adhesion force, which also increases the friction coefficient. We concluded that the hysteresis loss of rubber viscoelastic deformation contributes most of the friction force, accounting for the nonlinear viscoelastic behavior of filled rubber, and that the operative surface wavelength extends to the order of micrometers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.