The biotic ligand model (BLM) of acute toxicity to aquatic organisms is based on the concept that metals binding onto biotic ligand may cause toxic effect on the organism. The BLM can take into incorporation between metal speciation and the protective effects of competing cations account. The demonstrated BLM can provide a good estimation of the amount of single metal effect under various conditions such as pH, coexistence of other non toxic cations. However, toxic metals are often found as mixture in nature. This study estimated combined toxicity of Cu and Cd examined by growth inhibition of Duckweed (Lemna paucicostata) by using single toxicity data as toxic unit (TU) derived by three types of model, BLM and two conventional models, free ion activity model (FIAM), and total metal concentration model. According to our results, single toxicity data derived by the BLM can estimate combined toxicity described as a function of TU. Particularly under the high level of heavy metals stress, BLM clearly predicted toxicity of heavy metals compared with other two models. According to numeric correlation (R(2), root mean square error), the order is BLM (R=0.83, RMSE=13.5)> total metal concentration model (R=0.41, RMSE=24.9)> FIAM (R=0.36, RMSE=26.1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.