Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient either because they impose evolutionary pressure on the organism to eject the safeguard, because they can be circumvented by environmentally available compounds, or because they can be overcome by horizontal gene transfer (HGT). Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code to confer metabolic dependence on nonstandard amino acids for survival. The resulting GMOs cannot metabolically circumvent their biocontainment mechanisms using environmentally available compounds, and they exhibit unprecedented resistance to evolutionary escape via mutagenesis and HGT. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by reliance on synthetic metabolites.
The ability to redesign enzymes to catalyze non-cognate chemical transformations would have wide-ranging applications. We developed a computational method for repurposing the reactivity of active site functional groups of metalloenzymes to catalyze new reactions. Using this method, we engineered a zinc-containing murine adenosine deaminase to catalyze the hydrolysis of a model organophosphate with a catalytic efficiency kcat/Km ~104 M−1s−1 after directed evolution. In the high-resolution crystal structure of the enzyme, all but one of the designed residues adopt the designed conformation. The designed enzyme efficiently catalyzed the hydrolysis of the RP-isomer of a coumarinyl analog of the nerve agent cyclosarin, and showed striking substrate selectivity for coumarinyl leaving-groups. Computational redesign of native enzyme active sites complements directed evolution methods and offers a general approach for exploring their untapped catalytic potential for new reactivities.
Enzymes utilize substrate binding energy both to promote ground state association and to selectively lower the energy of the reaction transition state.i The monomeric homing endonuclease I-AniI cleaves with high sequence specificity in the center of a 20 base-pair DNA target site, with the N-terminal domain of the enzyme making extensive binding interactions with the left (−) side of the target site and the similarly structured C-terminal domain interacting with the right (+) side.ii Despite the approximate two-fold symmetry of the enzyme-DNA complex, we find that there is almost complete segregation of interactions responsible for substrate binding to the (−) side of the interface and interactions responsible for transition state stabilization to the (+) side. While single base-pair substitutions throughout the entire DNA target site reduce catalytic efficiency, mutations in the (−) DNA half-site almost exclusively increase KD and KM*, and those in the (+) half-site primarily decrease kcat*. The reduction of activity produced by mutations on the (−) side, but not mutations on the (+) side, can be suppressed by tethering the substrate to the endonuclease displayed on the surface of yeast. This dramatic asymmetry in the utilization of enzyme-substrate binding energy for catalysis has direct relevance to the redesign of endonucleases to cleave genomic target sites for gene therapy and other applications. Computationally redesigned enzymes that achieve new specificities on the (−) side do so by modulating KM*, while redesigns with altered specificities on the (+) side modulate kcat*. Our results illustrate how classical enzymology and modern protein design can each inform the other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.