Background In several previous studies, Charlson comorbidity index (CCI) score was associated with postoperative complications, mortality, and re-admission. There are few reports about the influence of CCI score on postoperative clinical outcome. The purpose of this study was to investigate the influence of comorbidities as calculated with CCI on postoperative clinical outcomes after PLIF. Methods Three hundred sixty-six patients who underwent an elective primary single-level PLIF were included. Postoperative clinical outcome was evaluated with the Japanese Orthopaedic Association lumbar score (JOA score). The correlation coefficient between the CCI score and postoperative improvement in JOA score was investigated. Patients were divided into three groups according to their CCI score (0, 1, and 2+). JOA improvement rate, length of stay (LOS), and direct cost were compared between each group. Postoperative complications were also investigated. Results There was a weak negative relationship between CCI score and JOA improvement rate (r = − 0.20). LOS and direct cost had almost no correlation with CCI score. The JOA improvement rate of group 0 and group 1 was significantly higher than group 2+. LOS and direct cost were also significantly different between group 0 and group 2+. There were 14 postoperative complications. Adverse postoperative complications were equivalently distributed in each group, and not associated with the number of comorbidities. Conclusions A higher CCI score leads to a poor postoperative outcome. The recovery rate of patients with two or more comorbidities was significantly higher than in patients without comorbidities. However, the CCI score did not influence LOS and increased direct costs. The surgeon must take into consideration the patient’s comorbidities when planning a surgical intervention in order to achieve a good clinical outcome.
BackgroundIntraoperative neuromonitoring using motor evoked potentials (MEP) satisfactorily detects motor tract integrity changes during spinal surgery. However, monitoring is affected by “anesthetic fade,” in which the stimulation threshold increases because the waveform amplitude decreases with the accumulation of propofol. Therefore, the purpose of this study was to clarify the effect of anesthetic fade on transcranial MEPs by investigating the time-dependent changes of amplitude during spinal deformity surgeries.MethodsWe retrospectively reviewed medical records of 142 spinal deformity patients (66 patients with idiopathic scoliosis, 28 with adult spinal deformities, 19 with neuromuscular scoliosis, 17 with syndromic scoliosis, and 12 with congenital scoliosis). The average age was 28 years (range, 5 to 81 years). MEPs were recorded bilaterally from the abductor digiti minimi (ADM) and abductor hallucis (AH) muscles during spinal deformity surgeries. The Wilcoxon signed-rank test was used to investigate the time-dependent changes of amplitude after propofol infusion to evaluate anesthetic fade effects.ResultsThe average time to baseline from initial propofol infusion was 113 min (range, 45 to 182 min). In the ADM, the amplitude was 52% at 1 h after initial propofol infusion, 102% at 2 h, 105% at 3 h, 101% at 4 h, 86% at 5 h, and 81% at 6 h. Compared to the 2-h time point, MEP decreased significantly by 16% at 5 h (P < 0.0005) and by 21% at 6 h (P < 0.05). In the AH, the amplitude was 49% at 1 h after initial infusion of propofol, 102% at 2 h, 102% at 3 h, 92% at 4 h, 71% at 5 h, and 63% at 6 h. Compared to the 2-h time point, MEP decreased significantly by 10% at 4 h (P < 0.005), by 31% at 5 h (P < 0.0000005), and by 39% at 6 h (P < 0.05).ConclusionsMEP amplitude significantly decreased in the upper limbs at 5 and 6 h and in the lower limbs at 4, 5, and 6 h after the initial infusion of propofol, respectively. The influence of anesthetic fade could influence false positive MEPs during long spinal surgeries.
Background Bertolotti’s syndrome is widely known to cause low back pain in young patients and must be considered as a differential diagnosis. Its treatment such as conservative therapy or surgery remains controversial. Surgical procedure is recommended for intractable low back pain. The three-dimensional (3D) lumbosacral transitional vertebrae anatomy should be completely understood for a successful surgery. Using an intraoperative 3D navigation and preoperative preliminary surgical planning with a patient-specific 3D plaster model contribute for safe surgery and good outcome. Case presentation A case of a 22-year-old Japanese male patient with intractable left low back pain due to lumbosacral transitional vertebrae with Bertolotti’s syndrome. The symptom resisted the conservative treatment, and anesthetic injection at pseudoarticulation only provided a short-term pain relief. Posterior resection using intraoperative three-dimensional (3D) navigation has been performed through microendoscopic view. Pseudoarticulation was totally and successfully resected in a safe manner. Conclusions Preoperative surgical planning and rehearsal using a patient-specific 3D plaster model was greatly useful and effective for surgeons in performing accurate and safe pseudoarticulation resection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.