Rechargeable lithium batteries have risen to prominence as key devices for green and sustainable energy development. Electric vehicles, which are not equipped with an internal combustion engine, have been launched in the market. Manganese- and iron-based positive-electrode materials, such as LiMn(2)O(4) and LiFePO(4), are used in large-scale batteries for electric vehicles. Manganese and iron are abundant elements in the Earth's crust, but lithium is not. In contrast to lithium, sodium is an attractive charge carrier on the basis of elemental abundance. Recently, some layered materials, where sodium can be electrochemically and reversibly extracted/inserted, have been reported. However, their reversible capacity is typically limited to 100 mAh g(-1). Herein, we report a new electrode material, P2-Na(2/3)[Fe(1/2)Mn(1/2)]O(2), that delivers 190 mAh g(-1) of reversible capacity in the sodium cells with the electrochemically active Fe(3+)/Fe(4+) redox. These results will contribute to the development of rechargeable batteries from the earth-abundant elements operable at room temperature.
Iron nitride films were produced by pulsed laser deposition of Fe onto an Al substrate in an N 2 atmosphere and their Mössbauer spectra and powder X-ray diffraction patterns were measured. The nitrogen content of the iron nitride films varied depending on the N 2 pressure. Under high N 2 pressures, γ "-FeN (ZnS structure) and γ "'-FeN (NaCl structure) were obtained. The yields of these two phases could be controlled by varying the Al substrate temperature. γ "-FeN and γ "'-FeN were found to be paramagnetic and antiferromagnetic, respectively, at 5 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.