Quasi-Newton (QN) methods have shown to be effective in training neural networks. However, the computation and the storage of the approximated Hessian in large-scale applications is still a problem. The Memory-less QN (MLQN) was introduced as a method that did not require the storage of the matrix. This paper describes the effectiveness of the momentum term for the accelerated MLQN method through computer simulations on function approximation and classification problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.