A macrocyclic tetramer of 2-phenyl-1,3,4-oxadiazole was synthesized, and its self-assembly was investigated. The macrocycle was stacked to form a one-dimensional (1D) columnar structure containing water molecules. The nanotube self-assembled into a bundle, which grew into a molecular wire. The association of the water molecules in the tubular cavity resulted in shielding of the 1D chain of water molecules by the nanotube; these macrocyclic nanotube channels are promising candidates for nanotechnological applications.
Summary: Two types of bis(2,5‐diphenyl‐1,3,4‐oxadiazole)s, macrocyclic and acyclic, were prepared and evaluated as electron‐transporting and hole‐blocking materials in phosphorescent EL devices. Maximum efficiencies of ηext = 10.4% at J = 0.11 mA · cm−2 for the macrocycle and ηext = 14.1% at J = 3.01 mA · cm−2 for the acycle were observed. X‐ray crystallographic analysis and DSC measurements revealed a strong intermolecular interaction between the macrocycles and weaker intermolecular interactions between the acycles. The EL characteristics depend on the intermolecular interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.