Parkinson's disease (PD) is the second most frequent neurodegenerative disorder after Alzheimer's disease. The main clinical features of PD include tremor, bradykinesia, rigidity and postural instability. The primary pathology of PD is degeneration of dopaminergic neurons in the substantia nigra pars compacta, resulting in loss of the nigrostriatal pathway and a reduction of dopamine contents in the striatum. The biochemical and cellular changes that occur following the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are remarkably similar to that seen in idiopathic PD. Recent evidence shows that oxidative stress contributes to the cascade leading to dopaminergic cell degeneration in PD. However, oxidative stress is intimately linked to other components of neurodegenerative process, such as nitric oxide stress and inflammation. Recently, there is convincing evidence for the involvement of nitric oxide that reacts with superoxide to produce peroxynitrite and ultimately hydroxyl radical production. In view of these new insights, however, the role of reactive nitrogen species, reactive oxygen species and inflammation against MPTP neurotoxicity is not fully understood. In this review, we discuss the possible role of reactive nitrogen species, reactive oxygen species and inflammation in the dopaminergic neurons against MPTP neurotoxicity.
Zonisamide, an anti-convulsant drug, has recently been shown to exert beneficial effects in Parkinson's disease (PD). However, actual pathophysiological mechanism underlying the anti-parkinsonian effect of zonisamide remains uncertain. Here we tested exactly the neuroprotective effect of zonisamide against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in mice. We observed that zonisamide attenuated MPTP-induced dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) depletion in the striatum and reduced the loss of tyrosine hidroxylase (TH) positive neurons and the increase of glial fibrillary acidic protein (GFAP) positive astrocytes in the striatum and substantia nigra after 5 days. Our Western blot analysis study also showed that zonisamide can prevent the decrease of TH protein levels and increase of GFAP protein levels in the striatum 5 days after MPTP treatment. In the present study, on the other hand, zonisaimde treatment showed no significant changes of the striatal dopamine, DOPAC, and HVA content in the striatum of normal mice after 1 day, as compared to the vehicle-treated group. Furthermore, zonisamide produced a significant increase of the TH protein levels in the striatum after 1 day, as compared to vehicle-treated group. In contrast, zonisamide showed no significant changes of the GFAP protein levels in the striatum after 1 day, as compared to vehicle-treated group. These results show that anticonvulsant drug, zonisamide, has the neuroprotective effect in the MPTP model of PD in mice. Our study also demonstrates that the neuroprotective effect of zonisamide against dopaminergic cell damage may be mediated by the elevation of TH activity on dopaminergic system after MPTP treatment in mice. Our findings suggest that zonisamide may offer a new approach for the treatment of PD.
We investigated the therapeutic effect of zonisamide against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in mice, using Western blot analysis, immunohistochemistry and behavioral test. Our Western blot analysis and immunohistochemical study showed that the post-treatment with zonisamide prevented significantly dopaminergic cell damage, the depletion of tyrosine-hydroxylase (TH) protein levels and the proliferation of microglia in the striatum and/or substantia nigra 8 days after MPTP treatment. Furthermore, our behavioral study showed that the post-treatment with zonisamide attenuated significantly the motor deficits 7 days after MPTP treatment. These results show that zonisamide has the therapeutic effect in the MPTP model of Parkinson's disease (PD) in mice. Our study also demonstrates the neuroprotective effect of zonisamide against dopaminergic cell damage after MPTP treatment in mice. Thus our present findings suggest that therapeutic strategies targeted to the activation of TH protein and/or the inhibition of microglial activation with zonisamide may offer a great potential for restoring the functional capacity of the surviving dopaminergic neurons in individuals affected with PD.
We investigated the therapeutic effect of zonisamide against 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in mice, using Western blot analysis, immunohistochemistry and behavioral test. Our Western blot analysis and immunohistochemical study showed that the post-treatment with zonisamide prevented significantly dopaminergic cell damage, the depletion of tyrosine-hydroxylase (TH) protein levels and the proliferation of microglia in the striatum and/or substantia nigra 8 days after MPTP treatment. Furthermore, our behavioral study showed that the post-treatment with zonisamide attenuated significantly the motor deficits 7 days after MPTP treatment. These results show that zonisamide has the therapeutic effect in the MPTP model of Parkinson's disease (PD) in mice. Our study also demonstrates the neuroprotective effect of zonisamide against dopaminergic cell damage after MPTP treatment in mice. Thus our present findings suggest that therapeutic strategies targeted to the activation of TH protein and/or the inhibition of microglial activation with zonisamide may offer a great potential for restoring the functional capacity of the surviving dopaminergic neurons in individuals affected with PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.