Mechanistic studies and expansion of the substrate scope of direct enantioselective alkynylation of α-ketiminoesters catalyzed by adaptable (phebox)rhodium(III) complexes are described. The mechanistic studies revealed that less acidic alkyne rather than more acidic acetic acid acted as a proton source in the catalytic cycle, and the generation of more active (acetato-κ(2)O,O')(alkynyl)(phebox)rhodium(III) complexes from the starting (diacetato)rhodium(III) complexes limited the overall reactivity of the reaction. These findings, as well as facile exchange of the alkynyl ligand on the (alkynyl)rhodium(III) complexes led us to use (acetato-κ(2)O,O')(trimethylsilylethynyl)(phebox)rhodium(III) complexes as a general precatalyst for various (alkynyl)rhodium(III) complexes. Use of the (trimethylsilylethynyl)rhodium(III) complexes as precatalysts enhanced the catalytic performance of the reactions with an α-ketiminoester derived from ethyl trifluoropyruvate at a catalyst loading as low as 0.5 mol % and expanded the substrate scope to unprecedented α-ketiminophosphonate and cyclic N-sulfonyl α-ketiminoesters.
The first catalytic enantioselective decarboxylative Mannich-type reaction of N-unprotected ketimines is reported, directly providing N-unprotected 3-tetrasubstituted 3-aminooxindoles in high yield and ee without protection/deprotection steps. The utility of this reaction is demonstrated in the short step synthesis of (+)-AG-041R.
Although BINOL-derived phosphoric acids are among the most widely used chiral Brønsted acid organocatalysts, their structures are mostly limited to 3,3'-disubstituted ones and simple 3-mono-substituted ones without any polar functionalities on the 3-substituent have not been used in highly enantioselective reactions. This work reports such 3-mono-substituted analogues as effective organocatalysts in direct highly enantioselective Friedel-Crafts-type alkylation of N-unprotected α-ketiminoester. The origin of the observed high enantioselectivity with the 3-mono-substituted catalyst is also discussed.
Enantioselective addition of boronic acids to N‐unsubstituted isatin‐derived ketimines was realized using rhodium(I)/chiral diene catalysts. The reactions can be performed in the presence of catalytic amounts of a base to give adducts in high yield with high enantioselectivity. Preliminary mechanistic information including a computational model to explain the observed enantioselectivity is also provided.
Carbon fiber (CF) obtained by pyrolysis of polyacrylonitrile (PAN-CF) surpasses metals in properties suitable for diverse applications such as aircraft manufacture and power turbine blades. PAN-CF obtained by pyrolysis at 1200− 1400 °C shows a remarkably high tensile strength of 7 GPa, much higher than pitch-based CF (pb-CF) consisting of piles of pure graphene networks. However, little information has been available on the atomistic structure of PAN-CF and on how it forms during pyrolysis. We pyrolyzed an acrylonitrile 9-mer in a carbon nanotube, monitored the course of the reaction using atomic-resolution electron microscopy and Raman spectroscopy, and found that this oligomer forms a thermally reactive wavy graphene-like network (WGN) at 1200−1400 °C during slow graphitization taking place between 900 and 1800 °C. Ptychographic microscopic analysis indicated that such material consists of 5-, 6-, and larger-membered rings; hence, it is not flat but wavy. The experimental data suggest that, during PAN-CF manufacturing, many layers of WGN hierarchically pile up to form a chemically and physically interdigitated noncrystalline phase that resists fracture and increases the tensile strength�the properties expected for high-entropy materials. pb-CF using nearly pure carbon starting material, on the other hand, forms a crystalline graphene network and is brittle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.