ObjectiveThe aim of this study was to establish a reliable and routine method for the preparation of 4-[10B]borono-2-[18F]fluoro-l-phenylalanine (l-[18F]FBPA) for boron neutron capture therapy-oriented diagnosis using positron emission tomography.MethodsTo produce l-[18F]FBPA by electrophilic fluorination of 4-[10B]borono-l-phenylalanine (l-BPA) with [18F]acetylhypofluorite ([18F]AcOF) via [18F]F2 derived from the 20Ne(d,α)18F nuclear reaction, several preparation parameters and characteristics of l-[18F]FBPA were investigated, including: pre-irradiation for [18F]F2 production, the carrier F2 content in the Ne target, l-BPA-to-F2 ratios, separation with high-performance liquid chromatography (HPLC) using 10 different eluents, enantiomeric purity, and residual trifluoroacetic acid used as the reaction solvent by gas chromatography-mass spectrometry.ResultsThe activity yields and molar activities of l-[18F]FBPA (n = 38) were 1200 ± 160 MBq and 46–113 GBq/mmol, respectively, after deuteron-irradiation for 2 h. Two 5 min pre-irradiations prior to [18F]F2 production for 18F-labeling were preferable. For l-[18F]FBPA synthesis, 0.15–0.2% of carrier F2 in Ne and l-BPA-to-F2 ratios > 2 were preferable. HPLC separations with five of the 10 eluents provided injectable l-[18F]FBPA without any further formulation processing, which resulted in a synthesis time of 32 min. Among the five eluents, 1 mM phosphate-buffered saline was the eluent of choice. The l-[18F]FBPA injection was sterile and pyrogen-free, and contained very small amounts of D-enantiomer (< 0.1% of l-[18F]FBPA), l-BPA (< 1% of l-FBPA), and trifluoroacetic acid (< 0.5 ppm).Conclusionsl-[18F]FBPA injection was reliably prepared by the electrophilic fluorination of l-BPA with [18F]AcOF followed by HPLC separation with 1 mM phosphate-buffered saline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.