In this paper, we propose a method of targetless and automatic Camera-LiDAR calibration. Our approach is an extension of hand-eye calibration framework to 2D-3D calibration. By using the sensor fusion odometry method, the scaled camera motions are calculated with high accuracy.In addition to this, we clarify the suitable motion for this calibration method.The proposed method only requires the three-dimensional point cloud and the camera image and does not need other information such as reflectance of LiDAR and to give initial extrinsic parameter. In the experiments, we demonstrate our method using several sensor configurations in indoor and outdoor scenes to verify the effectiveness. The accuracy of our method achieves more than other comparable state-of-the-art methods.
We propose an unsupervised real-time dense depth completion from a sparse depth map guided by a single image. Our method generates a smooth depth map while preserving discontinuity between different objects. Our key idea is a Binary Anisotropic Diffusion Tensor (B-ADT) which can completely eliminate smoothness constraint at intended positions and directions by applying it to variational regularization. We also propose an Image-guided Nearest Neighbor Search (IGNNS) to derive a piecewise constant depth map which is used for B-ADT derivation and in the data term of the variational energy. Our experiments show that our method can outperform previous unsupervised and semi-supervised depth completion methods in terms of accuracy. Moreover, since our resulting depth map preserves the discontinuity between objects, the result can be converted to a visually plausible point cloud. This is remarkable since previous methods generate unnatural surface-like artifacts between discontinuous objects.
This paper presents a fast registration method based on solving an energy minimization problem derived by implicit polynomials (IPs). Once a target object is encoded by an IP, it will be driven fast towards a corresponding source object along the IP's gradient flow without using point-wise correspondences. This registration process is accelerated by a new IP transformation method. Instead of the time-consuming transformation to a large discrete data set, the new method can transform the polynomial coefficients to maintain the same Euclidean transformation. Its computational efficiency enables us to improve a new application for real-time Ultrasound (US) pose estimation. The reported experimental results demonstrate the capabilities of our method in overcoming the limitations of a noisy, unconstrained, and freehand US image, resulting in fast and robust registration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.