Cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) play a central role in tumor progression. We investigated whether CAFs can regulate tumor-infiltrating lymphocytes (TILs) and their role in tumor immunosuppression. A total of 140 cases of esophageal cancer were analyzed for CAFs and CD8 or forkhead box protein 3 (FoxP3) TILs by IHC. We analyzed cytokines using murine or human fibroblasts and cancer cells. Murine-derived fibroblasts and cancer cells were also inoculated into BALB/c or BALB/c- mice and the tumors treated with recombinant IL6 or anti-IL6 antibody. CD8 TILs and CAFs were negatively correlated in intratumoral tissues ( < 0.001), whereas FoxP3 TILs were positively correlated ( < 0.001) in esophageal cancers. Cocultured Colon26 cancer cells and fibroblasts resulted in accelerated tumor growth in BALB/c mice, along with decreased CD8 and increased FoxP3 TILs, compared with cancer cells alone. , IL6 was highly secreted in both murine and human cancer cell/fibroblast cocultures. IL6 significantly increased Colon26 tumor growth in immune-competent BALB/c ( < 0.001) with fewer CD8 TILs than untreated tumors ( < 0.001), whereas no difference in BALB/c- mice. In contrast, FoxP3 TILs increased in IL6-treated tumors ( < 0.001). IL6 antibody blockade of tumors cocultured with fibroblasts resulted not only in regression of tumor growth but also in the accumulation of CD8 TILs in intratumoral tissues. CAFs regulate immunosuppressive TIL populations in the TME via IL6. IL6 blockade, or targeting CAFs, may improve preexisting tumor immunity and enhance the efficacy of conventional immunotherapies. .
Lymph node metastasis is a pathognomonic feature of spreading tumors, and overcoming metastasis is a challenge in attaining more favorable clinical outcomes. Esophageal cancer is an aggressive tumor for which lymph node metastasis is a strong poor prognostic factor, and the tumor microenvironment (TME), and cancer-associated fibroblasts (CAFs) in particular, has been implicated in esophageal cancer progression. CAFs play a central role in the TME and have been reported to provide suitable conditions for the progression of esophageal cancer, similar to their role in other malignancies. However, little is known concerning the relevance of CAFs to the lymph node metastasis of esophageal cancer. Here, we used clinical samples of esophageal cancer to reveal that CAFs promote lymph node metastasis and subsequently verified the intercellular relationships in vitro and in vivo using an orthotopic metastatic mouse model. In the analysis of clinical samples, FAP + CAFs were strongly associated with lymph node metastasis rather than with other prognostic factors. Furthermore, CAFs affected the ability of esophageal cancer cells to acquire metastatic phenotypes in vitro; this finding was confirmed by data from an in vivo orthotopic metastatic mouse model showing that the number of lymph node metastases increased upon injection of cocultured cancer cells and CAFs. In summary, we verified in vitro and in vivo that the accumulation of CAFs enhances the lymph node metastasis of ESCC. Our data suggest that CAF targeted therapy can reduce lymph node metastasis and improve the prognosis of patients with esophageal cancer in the future.
Cancer-associated fibroblasts (CAFs) have an important role in the tumor microenvironment. CAFs have the multifunctionality which strongly support cancer progression and the acquisition of therapeutic resistance by cancer cells. Near-infrared photoimmunotherapy (NIR-PIT) is a novel cancer treatment that uses a highly selective monoclonal antibody (mAb)-photosensitizer conjugate. We developed fibroblast activation protein (FAP)-targeted NIR-PIT, in which IR700 was conjugated to a FAP-specific antibody to target CAFs (CAFs-targeted NIR-PIT: CAFs-PIT). Thus, we hypothesized that the control of CAFs could overcome the resistance to conventional chemotherapy in esophageal cancer (EC). In this study, we evaluated whether EC cell acquisition of stronger malignant characteristics and refractoriness to chemoradiotherapy are mediated by CAFs. Next, we assessed whether the resistance could be rescued by eliminating CAF stimulation by CAFs-PIT in vitro and in vivo. Cancer cells acquired chemoradiotherapy resistance via CAF stimulation in vitro and 5-fluorouracil (FU) resistance in CAF-coinoculated tumor models in vivo. CAF stimulation promoted the migration/invasion of cancer cells and a stem-like phenotype in vitro, which were rescued by elimination of CAF stimulation. CAFs-PIT had a highly selective effect on CAFs in vitro. Finally, CAF elimination by CAFs-PIT in vivo demonstrated that the combination of 5-FU and NIR-PIT succeeded in producing 70.9% tumor reduction, while 5-FU alone achieved only 13.3% reduction, suggesting the recovery of 5-FU sensitivity in CAF-rich tumors. In conclusion, CAFs-PIT could overcome therapeutic resistance via CAF elimination. The combined use of novel targeted CAFs-PIT with conventional anticancer treatments can be expected to provide a more effective and sensible treatment strategy.
Adequate iron levels are essential for human health. However, iron overload can act as catalyst for the formation of free radicals, which may cause cancer. Cancer stem cells (CSCs), which maintain the hallmark stem cell characteristics of self-renewal and differentiation capacity, have been proposed as a driving force of tumorigenesis and metastases. In the present study, we investigated the role of iron in the proliferation and stemness of CSCs, using the miPS-LLCcm cell model. Although the anti-cancer agents fluorouracil and cisplatin suppressed the proliferation of miPS-LLCcm cells, these drugs did not alter the expression of stemness markers, including Nanog, SOX2, c-Myc, Oct3/4 and Klf4. In contrast, iron depletion by the iron chelators deferasirox and deferoxamine suppressed the proliferation of miPS-LLCcm cells and the expression of stemness markers. In an allograft model, deferasirox inhibited the growth of miPS-LLCcm implants, which was associated with decreased expression of Nanog and Sox2. Altogether, iron appears to be crucial for the proliferation and maintenance of stemness of CSCs, and iron depletion may be a novel therapeutic strategy to target CSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.