Degenerating muscle fibers in the skeletal muscle of mdx mice were visualized by vital staining with Evans blue. Evans blue injected intravenously stained only degenerating muscle fibers which were visible as blue fibers macroscopically and could also be seen as red fluorescent fibers microscopically. Evans blue-stained muscle fibers were either hypercontracted or degrading. Intact or regenerating muscle fibers in mdx mice and muscle fibers in B10 control mice were not stained with the dye. DNA isolated from Evans blue-stained fibers exhibited fragmentation to approximately 180 base pairs on agarose gel electrophoresis. Such DNA fragmentation was not found in DNA from unstained muscle fibers in mdx or B10 mice. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL)-positive myonuclei were also found in Evans blue-stained muscle fibers but not in unstained ones. These results indicate that degenerating muscle fibers in the mdx mouse show an increase in membrane permeability and undergo apoptosis. Vital staining with Evans blue is useful not only for distinguishing degenerating muscle fibers, but also for studying the degeneration process biochemically in dystrophin-deficient muscle. This method may also be useful for evaluating the therapeutic effects of drug administration, gene transfer, and myoblast transfer in the mdx mouse.
Myotube formation by fusion of myoblasts and subsequent elongation of the syncytia is essential for skeletal muscle formation. However, molecules that regulate myotube formation remain elusive. Here we identify PIEZO1, a mechanosensitive Ca2+ channel, as a key regulator of myotube formation. During myotube formation, phosphatidylserine, a phospholipid that resides in the inner leaflet of the plasma membrane, is transiently exposed to cell surface and promotes myoblast fusion. We show that cell surface phosphatidylserine inhibits PIEZO1 and that the inward translocation of phosphatidylserine, which is driven by the phospholipid flippase complex of ATP11A and CDC50A, is required for PIEZO1 activation. PIEZO1-mediated Ca2+ influx promotes RhoA/ROCK-mediated actomyosin assemblies at the lateral cortex of myotubes, thus preventing uncontrolled fusion of myotubes and leading to polarized elongation during myotube formation. These results suggest that cell surface flip-flop of phosphatidylserine acts as a molecular switch for PIEZO1 activation that governs proper morphogenesis during myotube formation.
Adult skeletal muscle is able to repeatedly regenerate because of the presence of satellite cells, a population of stem cells resident beneath the basal lamina that surrounds each myofiber. Little is known, however, of the signaling pathways involved in the activation of satellite cells from quiescence to proliferation, a crucial step in muscle regeneration. We show that sphingosine-1-phosphate induces satellite cells to enter the cell cycle. Indeed, inhibiting the sphingolipid-signaling cascade that generates sphingosine-1-phosphate significantly reduces the number of satellite cells able to proliferate in response to mitogen stimulation in vitro and perturbs muscle regeneration in vivo. In addition, metabolism of sphingomyelin located in the inner leaflet of the plasma membrane is probably the main source of sphingosine-1-phosphate used to mediate the mitogenic signal. Together, our observations show that sphingolipid signaling is involved in the induction of proliferation in an adult stem cell and a key component of muscle regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.