A cDNA encoding the new member of the multispecific organic anion transporter family, OAT3, was isolated by the reverse transcription-polymerase chain reaction cloning method. Degenerate primers were designed based on the sequences conserved among OAT1, OAT2, and organic cation transporter 1 (OCT1), and reverse transcription-polymerase chain reaction was performed using rat brain poly(A)؉ RNA. The 536-amino acid protein sequence encoded by OAT3 showed 49, 39, and 36% identity to those of OAT1, OAT2, and OCT1, respectively. Northern blot analysis revealed that rat OAT3 mRNA is expressed in the liver, brain, kidney, and eye. When
A novel 75 kDa membrane protein, TIRC7, is described that exhibits a central role in T cell activation in vitro and in vivo. Modulation of TIRC7-mediated signals with specific anti-TIRC7 antibodies in vitro efficiently prevents human T cell proliferation and IL-2 secretion. Moreover, anti-TIRC7 antibodies specifically inhibit type 1 subset specific IFN-gamma expression but spare the type 2 cytokine IL-4. Diminished proliferation but not IFN-gamma secretion is reversible by exogenous rIL-2. An anti-TIRC7 antibody that cross-reacts with the 75 kDa rat homolog exhibits inhibition of rat alloimmune response in vitro and significantly prolongs kidney allograft survival in vivo. Targeting of TIRC7 may provide a novel therapeutic approach for modulation of the immune response.
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), which is hydrolyzed by angiotensin-converting enzyme, is a natural regulator of hematopoiesis. Here it is shown that Ac-SDKP inhibits TGF- action in mesangial cells. Because TGF- is thought to play a pivotal role in the development and progression of glomerulonephritis, the therapeutic effects of Ac-SDKP on an established model of renal dysfunction and histologic alteration in Wistar-Kyoto rats with anti-glomerular basement membrane nephritis was examined. Fourteen days after the induction of anti-glomerular basement membrane nephritis, the rats were treated subcutaneously with Ac-SDKP at a dose of 1 mg/kg per d for 4 wk. Treatment with Ac-SDKP significantly improved proteinuria and renal dysfunction, including increased plasma blood urea nitrogen and creatinine levels and decreased creatinine clearance. Histologic examination showed severe glomerulosclerosis and interstitial fibrosis in the vehicle-treated rats, whereas these histologic injuries were significantly ameliorated in rats that were treated with Ac-SDKP. The histologic improvements were accompanied by the suppression of gene and protein expression of fibronectin, interstitial collagen, and TGF-1 in the nephritic kidney. Furthermore, treatment with Ac-SDKP resulted in the inhibition of Smad2 phosphorylation, an increase in Smad7 expression in the kidney, and reduction of macrophage accumulation into the glomeruli and tubulointerstitium in nephritic rats. In conclusion, Ac-SDKP significantly ameliorated the progression of renal dysfunction and fibrosis even after the establishment of nephritis. The inhibitory effect of Ac-SDKP was mediated in part by the inhibition of TGF-/Smad signal transduction and the inflammatory response. These findings suggest that Ac-SDKP treatment may be a novel and useful therapeutic strategy for the treatment of progressive renal diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.