Urinary neutrophil gelatinase-associated lipocalin (Ngal or lipocalin 2) is a very early and sensitive biomarker of kidney injury. Here we determined the origin and time course of Ngal appearance in several experimental and clinically relevant renal diseases. Urinary Ngal levels were found to be markedly increased in lipoatrophic- and streptozotocin-induced mouse models of diabetic nephropathy. In the latter mice, the angiotensin receptor blocker candesartan dramatically decreased urinary Ngal excretion. The reabsorption of Ngal by the proximal tubule was severely reduced in streptozotocin-induced diabetic mice, but upregulation of its mRNA and protein in the kidney was negligible, compared to those of control mice, suggesting that increased urinary Ngal was mainly due to impaired renal reabsorption. In the mouse model of unilateral ureteral obstruction, Ngal protein synthesis was dramatically increased in the dilated thick ascending limb of Henle and N was found in the urine present in the swollen pelvis of the ligated kidney. Five patients with nephrotic syndrome or interstitial nephritis had markedly elevated urinary Ngal levels at presentation, but these decreased in response to treatment. Our study shows that the urinary Ngal level may be useful for monitoring the status and treatment of diverse renal diseases reflecting defects in glomerular filtration barrier, proximal tubule reabsorption, and distal nephrons.
We have previously reported that N-acetyl-seryl-aspartyllysyl-proline (Ac-SDKP), which is a tetrapeptide hydrolyzed by ACE, inhibits the transforming growth factor- (TGF-)-induced expression of extracellular matrix proteins via inhibition of the Smad signaling in human mesangial cells. To test in vivo the antifibrotic efficacy of Ac-SDKP, we examined whether long-term Ac-SDKP treatment can prevent renal insufficiency and glomerulosclerosis in diabetic db/db mice. Diabetic db/db mice or nondiabetic db/m mice were treated with Ac-SDKP for 8 weeks using osmotic minipumps. The treatment with Ac-SDKP increased plasma Ac-SDKP concentrations by approximately threefold in both groups but did not affect the blood glucose levels. Histologically, the increased glomerular surface area, mesangial matrix expansion, and overproduction of extracellular matrix proteins in db/db mice were significantly inhibited by Ac-SDKP. Furthermore, Ac-SDKP treatment normalized the increased plasma creatinine value in db/db mice, whereas the albuminuria in Ac-SDKP-treated db/db mice was somewhat decreased as compared with nontreated db/db mice, although the difference was not statistically significant. In addition, the nuclear translocation of Smad3 was inhibited by Ac-SDKP. These results demonstrate that long-term Ac-SDKP treatment ameliorates renal insufficiency and glomerulosclerosis in db/db mice via inhibition of TGF-/Smad pathway, suggesting that Ac-SDKP could be useful in the treatment of diabetic nephropathy. Diabetes 54:838 -845, 2005
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), which is hydrolyzed by angiotensin-converting enzyme, is a natural regulator of hematopoiesis. Here it is shown that Ac-SDKP inhibits TGF- action in mesangial cells. Because TGF- is thought to play a pivotal role in the development and progression of glomerulonephritis, the therapeutic effects of Ac-SDKP on an established model of renal dysfunction and histologic alteration in Wistar-Kyoto rats with anti-glomerular basement membrane nephritis was examined. Fourteen days after the induction of anti-glomerular basement membrane nephritis, the rats were treated subcutaneously with Ac-SDKP at a dose of 1 mg/kg per d for 4 wk. Treatment with Ac-SDKP significantly improved proteinuria and renal dysfunction, including increased plasma blood urea nitrogen and creatinine levels and decreased creatinine clearance. Histologic examination showed severe glomerulosclerosis and interstitial fibrosis in the vehicle-treated rats, whereas these histologic injuries were significantly ameliorated in rats that were treated with Ac-SDKP. The histologic improvements were accompanied by the suppression of gene and protein expression of fibronectin, interstitial collagen, and TGF-1 in the nephritic kidney. Furthermore, treatment with Ac-SDKP resulted in the inhibition of Smad2 phosphorylation, an increase in Smad7 expression in the kidney, and reduction of macrophage accumulation into the glomeruli and tubulointerstitium in nephritic rats. In conclusion, Ac-SDKP significantly ameliorated the progression of renal dysfunction and fibrosis even after the establishment of nephritis. The inhibitory effect of Ac-SDKP was mediated in part by the inhibition of TGF-/Smad signal transduction and the inflammatory response. These findings suggest that Ac-SDKP treatment may be a novel and useful therapeutic strategy for the treatment of progressive renal diseases.
We tested whether polysaccharide fucoidin, which inhibits leukocyte rolling in the mesenteric venule, has protective effects in the rat myocardial 30-min ischemia and 6-h reperfusion injury model. Intravenous infusion of fucoidin (27 microg/kg/min from 10 min before to 6 h after reperfusion) significantly attenuated myocardial infarct size 6 h after reperfusion. In this ischemia and reperfusion heart model, expression of P-selectin (determined immunohistochemically) was observed on the venular endothelial cells in the heart 30 min after reperfusion and also was sustained after 6 h. Neutrophil infiltration as estimated by myeloperoxidase activity significantly increased 2 h after reperfusion and kept increasing with time until 6 h after reperfusion. Four-hour infusion of fucoidin after reperfusion significantly reduced neutrophil infiltration, whereas the 2-h infusion of fucoidin did not. These results indicate that neutrophil infiltration and myocardial injury are attributed to expression of P-selectin after reperfusion, and that one of the inhibitory mechanisms of fucoidin seems to be blockade of P-selectin-mediated neutrophil rolling on the vessel wall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.