The conversion of latent transforming growth factor beta (LTGF-beta) to the active species, transforming growth factor beta (TGF-beta), has been characterized in heterotypic cultures of bovine aortic endothelial (BAE) cells and bovine smooth muscle cells (SMCs). The formation of TGF-beta in co-cultures of BAE cells and SMCs was documented by a specific radioreceptor competition assay, while medium from homotypic cultures of BAE cells or SMCs contained no active TGF-beta as determined by this assay. The concentration of TGF-beta in the conditioned medium of heterotypic co-cultures was estimated to be 400-1,200 pg/ml using the inhibition of BAE cell migration as an assay. Northern blotting of poly A+ RNA extracted from both homotypic and heterotypic cultures of BAE cells and SMCs revealed that BAE cells produced both TGF-beta 1 and TGF-beta 2, while SMCs produced primarily TGF-beta 1. No change in the expression of these two forms of TGF-beta was apparent after 24 h in heterotypic cultures. Time course studies on the appearance of TGF-beta indicated that most of the active TGF-beta was generated within the first 12 h after the establishment of co-cultures. The generation of TGF-beta in co-cultures stimulated the production of the protease inhibitor plasminogen activator inhibitor-1 (PAI-1). The inclusion of neutralizing antibodies to TGF-beta in the co-culture medium blocked the observed increase in PAI-1 levels. The increased expression of PAI-1 subsequent to TGF-beta formation blocked the activation of the protease required for conversion of LTGF-beta to TGF-beta as the inclusion of neutralizing antibodies to PAI-1 in the co-culture medium resulted in prolonged production of TGF-beta. This effect was lost upon removal of the PAI-1 antibodies. Thus, the activation of LTGF-beta appears to be a self-regulating system.
Patients with atopic dermatitis (AD) are highly susceptible to viral, bacterial, and fungal skin infections because their skin is dry and this compromises the barrier function of the skin. Therefore, the skin microbiota of patients with AD is believed to be different from that of healthy individuals. In the present study, the skin fungal microbiota of nine patients with mild, moderate, or severe AD and ten healthy subjects were compared using an rRNA clone library. Fungal D1/D2 large subunit analysis of 3647 clones identified 58 species and seven unknown phylotypes in face scale samples from patients with AD and healthy subjects. Malassezia species were predominant, accounting for 63%-86% of the clones identified from each subject. Overall, the non-Malassezia yeast microbiota of the patients was more diverse than that of the healthy individuals. In the AD samples 13.0 ± 3.0 species per case were detected, as compared to 8.0 ± 1.9 species per case in the samples taken from healthy individuals. Notably, Candida albicans, Cryptococcus diffluens, and Cryptococcus liquefaciens were detected in the samples from the patients with AD. Of the filamentous fungal microbiota, Cladosporium spp. and Toxicocladosporium irritans were the predominant species in these patients. Many pathogenic fungi, including Meyerozyma guilliermondii (anamorphic name, Candida guilliermondii), and Trichosporon asahii, and allergenic microorganisms such as Alternaria alternata and Aureobasidium pullulans were found on the skin of the healthy subjects. When the fungal microbiota of the samples from patients with mild/moderate to severe AD and healthy individuals were clustered together by principal coordinates analysis they were found to be clustered according to health status.
Abstract. The role of basic fibroblast growth factor-(bFGF) induced proteinases in basement membrane (BM) invasion by bovine capillary endothelial (BCE) cells was studied using a quantitative in vitro assay previously described (Mignatti et al., 1986). ~25I-iododeoxyuridine-labeled BCE cells were grown for 72 h on the human amnion BM, and cell invasion was determined by measuring the radioactivity associated with the tissue after removal of the noninvasive cell layer. BCE cells were noninvasive under normal conditions. Addition of human bFGF to either the BM or to the stromal aspect of the amnion induced BCE cell invasion with a dose-dependent response. This effect was maximal in the presence of 70 ng/ml bFGF, and was inhibited by anti-bFGF antibody. Transforming growth factor beta, as well as plasmin inhibitors and anti-tissue type plasminogen activator antibody inhibited BCE cell invasion. The tissue inhibitor of metalloproteinases, 1-10 phenanthroline, anti-type IV and anti-interstitial collagenase antibodies had the same effect. On the contrary, anti-stromelysin antibody and Eglin, an inhibitor of elastase, were ineffective. The results obtained show that both the plasminogen activator-plasmin system and specific collagenases are involved in the invasive process occurring during angiogenesis.
SummaryThe stimulatory effect of recombinant basic fibroblast growth factor (bFGF) on wound healing was assessed using healing-impaired (db/db) mice. Full-thickness wounds were made in female diabetic C57BL/Ksj AM mice, and their normal (db/+) littermates with a punch biopsy instrument. Recombinant bFGF was applied locally to the open wound once a day. The mice were later killed and histological sections of the wounds were prepared. The degree of wound healing was evaluated using several histological parameters such as degree of reepithelialization, granulation tissue thickness, matrix density, number of infiltrated cells, and number ofcapillaries . Wounds from normal mice displayed good reepithelialization rates and granulation tissue formation, while wounds from db/db mice had poor responses, especially in the dermal parameters. Although the application of bFGF to wounds in the normal (db/+ ) mice had little effect, application of bFGF to wounds in AM mice induced significant responses in all of the dermal parameters compared with nontreated AM mice (p < 0.001). In the presence of bFGF, these parameters approximated those observed in nontreated littermates. A minimum of 0.5 wg bFGF in either single or multiple applications was required for a significant effect. bFGF that was either boiled or pretreated with neutralizing antibody had little stimulatory effect . Time-course experiments indicated that the granulation response in bFGF-treated mice peaked between 8 and 12 d, and decreased after 12 d, while matrix density continued to increase until the 18th day (P < 0.05). The breaking strength of healed linear wounds in AM mice was also decreased when compared with heterozygous littermates . This parameter was also improved by the administration ofbFGF to the wounds (p < 0.05).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.