Bacterial communities and betaproteobacterial ammonia-oxidizing bacteria (AOB) communities were evaluated seasonally in an intermittent-aeration sequencing batch process (SBR, plant A) and in 12 other livestock wastewater treatment plants (WWTP): eight SBRs and four conventional activated-sludge systems. Microbial communities were analysed by reverse transcription polymerase chain reaction followed by denaturing-gradient gel electrophoresis (DGGE) and the construction of clone libraries for 16S rRNA and ammonia monooxygenase (amoA) genes. In plant A, the dominant bacteria were as-yet-uncultured bacteria of Bacteroidetes and Proteobacteria, and the DGGE profiles showed that the bacterial communities were stable during a given treatment cycle, but changed seasonally. In betaproteobacterial AOB communities, two AOB phylotypes (members of the Nitrosomonas ureae-oligotropha-marina cluster) were dominant during the seasons in plant A. Although the dominant AOB phylotypes differed among the 13 WWTPs, dominance by one or two AOB phylotypes was commonly observed in all plants. Sequencing of the DGGE bands indicated that amoA sequences belonging to the Nitrosomonas europaea-eutropha cluster were dominant in 11 plants, where the ammonia-nitrogen concentration was high in the raw wastewater, whereas those belonging to the Nitrosomonas ureae-oligotropha-marina cluster were dominant in two plants where the concentration was relatively low. Even though we detected many minor amoA sequences by means of five clone libraries for the A to D plants, no libraries comprised both amoA sequences belonging to the two clusters, indicating that the dominant AOBs were defined by cluster level in each plant.
The composting process is carried out under aerobic conditions involving bacteria, archaea, and fungi. Little is known about the diversity of archaeal community in compost, although they may play an important role in methane production and ammonia oxidation. In the present study, archaeal community dynamics during cattle manure composting were analyzed using a clone library of the archaeal 16S rRNA gene. The results indicated that methane-producing archaea (methanogen) and ammonia-oxidizing archaea (AOA) may be the dominant microbes throughout the composting. The community consisted primarily of Methanocorpusculum-like and Methanosarcina-like sequences until day 2, while the number of Candidatus Nitrososphaera-like sequences increased from day 6 to day 30. Methanosarcina thermophila-like sequences were dominant from day 2, suggesting that M. thermophila-like species can adapt to increasing temperature or nutrient loss. A denaturant gradient gel electrophoresis analysis of the archaeal amoA genes revealed that the dominant amoA gene sequence with 99% homology to that of Candidatus Nitrososphaera gargensis was identical to those obtained from a different composting facility. These data suggested that AOA may play a role in ammonia oxidation in several composting practices. Our results provide fundamental information regarding archaeal community dynamics that will help in understanding the collective microbial community in compost.
[1] Most studies of denitrification have focused on organic carbon as an electron donor, but reduced sulfur can also support denitrification. Few studies have reported nitrate (NO 3 À ) reduction coupled with pyrite oxidation and its stoichiometry in surface sediments, especially without experimental pyrite addition. In this study, we evaluated NO 3 À reduction coupled with sulfur oxidation by long-term incubation of surface sediments from a sulfiderich ecosystem in Akita Prefecture, Japan. The surface sediments were sampled from a mud pool and a riverbed. Fresh sediments and water were incubated under anoxic conditions (and one oxic condition) at 20 C. NO 3 À addition increased the SO 4 2À concentration and decreased the NO 3 À concentration. SO 4 2À production (ΔSO 4 2À ) was strongly and linearly correlated with NO 3 À consumption (ΔNO 3 À ) during the incubation period (R 2 = 0.983, P < 0.01, and n = 8), and the slope of the regression (ΔNO 3 À /ΔSO 4 2À) and the stoichiometry indicated sulfur-driven NO 3 À reduction by indigenous autotrophic denitrifying bacteria. Framboidal pyrite and marcasite (both FeS 2 ) were present in the sediments and functioned as the electron donors for autotrophic denitrification. Both ΔNO 3 À and ΔSO 4 2À were higher in the riverbed sediment than in the mud pool sediment, likely because of the higher amount of easily oxidizable S (pyrite) in the riverbed sediment. Consistently low ammonium (NH 4 + ) concentrations indicated that NO 3 À reduction by dissimilatory NO 3 À reduction to NH 4 + was small but could not be disregarded. Our results demonstrate that sulfide-rich ecosystems with easily oxidizable metal-bound sulfides such as FeS 2 near the ground surface may act as denitrification hot spots.Citation: Hayakawa, A., M. Hatakeyama , R. Asano, Y. Ishikawa, and S. Hidaka (2013), Nitrate reduction coupled with pyrite oxidation in the surface sediments of a sulfide-rich ecosystem,
The effects of inundation caused by the 2011 Tohoku tsunami on soil bacterial communities in agricultural fields were evaluated. Bacterial communities were compared across three different types of soil, unflooded field (UF) soil, soil flooded for 2 weeks (short term (ST)), and soil flooded for 2 months (long term (LT)), using polymerase chain reaction-pyrosequencing of 16S rRNA genes. Acidobacteria were dominant in UF, with a relative abundance of approximately 35 %, and Proteobacteria dominated flooded soils (30-67 %). Hierarchical cluster analysis indicated that the community structure of soil bacteria in flooded soils (ST and LT) clearly differed from that in UF. Differences between LT and ST fields were rarely observed in terms of chemical properties and microbial community structure at the phylum level. However, sulfur-oxidizing bacteria (SOB) and nitrite-oxidizing bacteria (NOB) in LT tended to occur at high and low abundances, respectively. Halothiobacillus, a halotolerant SOB, was detected in all LT fields. Unexpectedly, a zeta-Proteobacteria, which had previously only been detected in marine environments, was detected in LT fields only. Our results demonstrate that the effects of the 2011 Tohoku tsunami on soil bacterial communities in agricultural fields may have lasted at least 1 year. Furthermore, SOB, NOB, and zeta-Proteobacteria may serve as indicators of the effects of seawater inundation on microorganisms.
We investigated the structure of bacterial communities present in livestock manure-based composting processes and evaluated the bacterial succession during the composting processes. Compost samples were derived separately from swine manure, dairy manure and sewage sludge. The structure of the bacterial community was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) using universal eubacterial primers. The genus Bacillus and related genera were mainly detected following the thermophilic composting phase of swine and dairy manure composts, and the members of the phylum Bacteroidetes were mainly detected in the cattle manure waste-based and sewage sludge compost. We recovered and sequenced limited number of the bands; however, the PCR-DGGE analysis showed that predominant diversities during the composting processes were markedly changed. Although PCR-DGGE analysis revealed the presence of different phyla in the early stages of composting, the members of the phylum Firmicutes and Bacteroidetes were observed to be one of the predominant phyla after the thermophilic phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.