Members of the Colletotrichum gloeosporioides species complex are causal agents of anthracnose in many commercially important plants. Closely related strains have different levels of pathogenicity on hosts despite their close phylogenetic relationship. To gain insight into the genetics underlying these differences, we generated and annotated whole-genome assemblies of multiple isolates of C. fructicola (Cf) and C. siamense (Cs), as well as three previously unsequenced species, C. aenigma (Ca), C. tropicale and C. viniferum with different pathogenicity on strawberry. Based on comparative genomics, we identified accessory regions with a high degree of conservation in strawberry-pathogenic Cf, Cs and Ca strains. These regions encode homologs of pathogenicity-related genes known as effectors, organized in syntenic gene clusters, with copy number variations in different strains of Cf, Cs and Ca. Analysis of highly contiguous assemblies of Cf, Cs and Ca revealed the association of related accessory effector gene clusters with telomeres and repeat-rich chromosomes and provided evidence of exchange between these two genomic compartments. In addition, expression analysis indicated that orthologues in syntenic gene clusters showed a tendency for correlated gene expression during infection. These data provide insight into mechanisms by which Colletotrichum genomes evolve, acquire and organize effectors.
Type 2C protein phosphatase (PP2C) is a central player in abscisic acid (ABA) signaling transduction, which is required for plant growth, development and stress responses. In Arabidopsis, group A PP2Cs inhibit activity of the SNF1-related protein kinases 2 (SnRK2) family via physical interaction. To clarify whether this scheme is conserved in woody plants, we experimentally isolated the genes homologous to three members of group A PP2Cs (PtABI1, PtAHG1 and PtAHG3) and 12 SnRK2s (PtSnRK2.1-2.12) from a model tree Populus trichocarpa, and examined their interaction using a yeast two-hybrid assay. Our results showed that only three PtSnRK2 proteins had a positive interaction with PtPP2Cs: PtSnRK2.10 possessed strong interaction activity with all three PtPP2Cs, while significant, but relatively weak, interactions were observed with PtSnRK2.6 and PtSnRK2.9. These three PtSnRK proteins are grouped into subclass 2 or 3, which are considered to be ABA-dependent kinases in Arabidopsis. These findings suggest that physical interaction between SnRK2 and PP2C is also conserved in poplars and may be involved in the ABA signaling pathway in tree plants.
Small nuclear RNA (snRNA) is a class of non-coding RNAs that processes pre-mRNA and rRNA. Transcription of abundant snRNA species is regulated by the snRNA activating protein complex (SNAPc), which is conserved among multicellular organisms including plants. SRD2, a putative subunit of SNAPc in Arabidopsis thaliana, is essential for development, and the point mutation srd2-1 causes severe defects in hypocotyl dedifferentiation and de novo meristem formation. Based on phenotypic analysis of srd2-1 mutant plants, we previously proposed that snRNA content is a limiting factor in dedifferentiation in plant cells. Here, we performed functional complementation analysis of srd2-1 using transgenic srd2-1 Arabidopsis plants harboring SRD2 homologs from Populus trichocarpa (poplar), Nicotiana tabacum (tobacco), Oryza sativa (rice), the moss Physcomitrella patens, and Homo sapiens (human) under the control of the Arabidopsis SRD2 promoter. Only rice SRD2 suppressed the faulty tissue culture responses of srd2-1, and restore the snRNA levels; however, interestingly, all SRD2 homologs except poplar SRD2 rescued the srd2-1 defects in seedling development. These findings demonstrated that cell dedifferentiation and organogenesis induced during tissue culture require higher snRNA levels than does seedling development.
Developing methods to efficiently convert lignocellulosic polymers, i.e. cellulose, hemicellulose, and lignin into user-friendly carbon resources, such as fermentable sugars, is critical for improving plant biomass utilization. Here, we report the identification of genes that increase enzymatic saccharification efficiency in cultured Arabidopsis wood cells. We overexpressed a set of genes that were upregulated during the early stages of in vitro xylem vessel cell differentiation, including transcription factor and CAZYme genes, in Arabidopsis and tested their effects on enzymatic saccharification efficiency. Of the 96 transgenic seedlings sampled, 37 and 17 lines showed significant increases and decreases in glucose yields, respectively. Further analysis of 20 overexpression lines with high glucose yields in seedling samples indicated that compared to wild type, the glucose and xylose yields from inflorescence stem samples were higher in lines overexpressing genes encoding BETA-XYLOSIDASE 2, UDP-GLUCOSYL TRANSFERASE 88A1, AT3G15350 (a class GT14 glycosyltransferase protein), and the Dof-type transcription factor Dof4.6, whose detailed molecular functions have not yet been characterized. No apparent defect in growth or inflorescence stem structure was detected in these overexpression lines. Therefore, these four genes might represent novel factors that can be used to increase saccharification efficiency in wood tissues without negatively affecting total biomass production. Furthermore, our results confirm the validity of our screening strategy for isolating factors related to the saccharification efficiency of lignocellulosic biomass.
Species of the fungal genus Colletotrichum are among the most devastating pathogens of agricultural crops in the world. Based on DNA sequence data (ITS, GAPDH, CHS-1, ACT, TUB2) and morphology, we revealed Colletotrichum isolates infecting the oil crop Perilla frutescens, commonly known as shiso, to represent a previously unknown species of the C. destructivum species complex and described it as C. shisoi. We found that C. shisoi appears to be able to adopt a hemibiotrophic lifestyle, characterised by the formation of biotrophic hyphae followed by severe necrotic lesions on P. frutescens, but is less virulent on Arabidopsis, compared to its close relative C. higginsianum which also belongs to the C. destructivum species complex. The genome of C. shisoi was sequenced, annotated and its predicted proteome compared with four other Colletotrichum species. The predicted proteomes of C. shisoi and C. higginsianum, share many candidate effectors, which are small, secreted proteins that may contribute to infection. Interestingly, C. destructivum species complex-specific secreted proteins showed evidence of increased diversifying selection which may be related to their host specificities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.