BackgroundFish are remarkably diverse in repertoires of visual opsins by gene duplications. Differentiation of their spatiotemporal expression patterns and absorption spectra enables fine-tuning of feature detection in spectrally distinct regions of the visual field during ontogeny. Zebrafish have quadruplicated green-sensitive (RH2) opsin genes in tandem (RH2-1, −2, −3, −4), which are expressed in the short member of the double cones (SDC). The shortest wavelength RH2 subtype (RH2-1) is expressed in the central to dorsal area of the adult retina. The second shortest wave subtype (RH2-2) is expressed overlapping with RH2-1 but extending outside of it. The second longest wave subtype (RH2-3) is expressed surrounding the RH2–2 area, and the longest wave subtype (RH2-4) is expressed outside of the RH2-3 area broadly occupying the ventral area. Expression of the four RH2 genes in SDC requires a single enhancer (RH2-LCR), but the mechanism of their spatial differentiation remains elusive.ResultsFunctional comparison of the RH2-LCR with its counterpart in medaka revealed that the regulatory role of the RH2-LCR in SDC-specific expression is evolutionarily conserved. By combining the RH2-LCR and the proximal upstream region of each RH2 gene with fluorescent protein reporters, we show that the RH2-LCR and the RH2-3 proximal regulatory region confer no spatial selectivity of expression in the retina. But those of RH2-1, −2 and −4 are capable of inducing spatial differentiation of expression. Furthermore, by analyzing transgenic fish with a series of arrays consisting of the RH2-LCR and multiple upstream regions of the RH2 genes in different orders, we show that a gene expression pattern related to an upstream region is greatly influenced by another flanking upstream region in a relative position-dependent manner.ConclusionsThe zebrafish RH2 genes except RH2-3 acquired differential cis-elements in the proximal upstream regions to specify the differential expression patterns. The input from these proximal elements collectively dictates the actual gene expression pattern of the locus, context-dependently. Importantly, competition for the RH2-LCR activity among the replicates is critical in this collective regulation, facilitating differentiation of expression among them. This combination of specificity and generality enables seemingly complicated spatial differentiation of duplicated opsin genes characteristic in fish.Electronic supplementary materialThe online version of this article (doi:10.1186/s12863-015-0288-7) contains supplementary material, which is available to authorized users.
Rapid multi-residue analysis of pesticides in pulses was developed using LC-MS/MS. Pesticide residues in 5 g of homogenized pulses were extracted with 30 mL of acetonitrile and salted out with 4 g of anhydrous magnesium sulfate and 2 g of sodium chloride in the presence of citrate buffer in a disposable tube. The resulting residues were extracted with 30 mL of acetonitrile, and co-extractives were removed on a handmade four-layer column, consisting of a layer of Z-Sep/C18 20 mg/50 mg dry particles on top of a three-layer, custom-made pre-packed column lower bed: 60 mg of PSA, middle bed: 30 mg of GC, and top bed: 60 mg of C18 packed in a 10 mm internal diameter polypropylene column 3 mL . The developed method showed good recoveries of pesticides in soybean, lentil, white kidney bean and garbanzo. According to the method validation guideline of the Ministry of Health, Labour and Welfare of Japan, recovery tests were conducted in soybeans fortified with 107 kinds of pesticides at the levels of 0.01 and 0.1 μ g/g, respectively. At each concentration 2 samples were extracted on 5 separate days. Pesticides in the test solution were determined by LC-MS/MS using scheduled MRM. As regards the trueness of this method for 107 pesticides in soybeans, 97 pesticides were in the range of 70-120 with satisfactory repeatability and within-run reproducibility. This new method is expected to be applicable for routine examination of pesticide residues in soybeans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.