Although fancy caudae are important traits for chicken breeds, factors associated with their morphological diversity are not fully understood. We analyzed the caudal skeleton of the Tosa-jidori, Chabo, and Minohikichabo breeds with wild-type, erect, and rich caudae, respectively. Five of six Tosa-jidori chickens had four caudal vertebrae, whereas all six Chabo and five of six Minohikichabo chickens had five. The angle of the apex pygostyli with respect to the margo cranialis was significantly larger and smaller in Chabo and Minohikichabo than Tosa-jidori chickens, respectively. These findings indicated that the caudal skeleton is one of important factors for forming the characteristic traits of chicken breeds.
Japanese indigenous chickens include approximately 50 breeds exhibiting various morphological traits, such as a long tail. These genetic resources will be important for revealing the genetic basis of morphological traits in the future. However, little is known about the phenotypic characteristics of each breed during the growth stages. To understand age-dependent changes in growth and morphological traits, we investigated tail length, tail number, body weight, and shank length at several time points using three genetically distinct Japanese indigenous chicken breeds. A total of 155 birds from the Tosa-jidori, Chabo, and Minohikichabo breeds were used for trait measurements from 1 to 36 weeks of age to reveal breed and sex effects. Significant sex differences through the growth stages were observed for all traits except for tail number. Although there were no clear breed differences in tail length traits at the 6- and 20-week stages, Minohikichabo ultimately had a significantly longer tail due to extended tail feather growth at later stages (28 and 36 weeks). By measuring two tail length variables (central and maximum), it was revealed that the shape of the tail feathers varies with the growth stage. Minohikichabo's tail number was higher than that of Tosajidori and Chabo at earlier ages (8 and 16 weeks), which leads to an elegant visual in Minohikichabo. Tosa-jidori's body weight was higher than that of Chabo and Minohikichabo, whereas the shank lengths of Chabo and Minohikichabo were shorter than those of Tosa-jidori. These differences in body weight and shank length were consistent from the early to late growth stages. These results revealed the age-dependency of growth and morphological trait breed characteristics.
In recent years, the market share for cage-free eggs has gradually increased. Because commercially available cage-free eggs are often produced not only by several housing systems but also with different feed crude protein (CP) levels, there are combined effects of feed and housing systems between cage-free and cage eggs. Therefore, using field data, this study aimed to determine the combined effects of feed and housing systems on egg traits and yolk and albumen amino acids in table eggs. Brown layers (n = 40) at the middle laying stage under two feed and housing systems (cage, CP 15.5% diet; barn, CP 17.0% diet) were used. One-way analysis of variance and Pearson’s correlation analysis were used to evaluate 10 egg traits, 19 yolk amino acid traits, and 20 albumen amino acid traits. We observed significant effects of feed and housing on two egg traits (yolk weight and eggshell color redness), 16 yolk amino acids (Asp, Glu, Asn, Ser, Gln, His, Arg, Thr, Ala, Tyr, Met, Cys, Ile, Leu, Phe, and Lys), and 14 albumen amino acids (Asp, Asn, Ser, Gln, Gly, His, Arg, Thr, Ala, Val, Met, Cys, Ile, and Leu). This study revealed that eggs from the barn system (CP 17.0%) contained higher levels of free amino acids in 15 yolk and nine albumen amino acid traits. Phenotypic correlations among the 49 egg traits indicated similar correlation patterns in both systems, which implies that the balance of free amino acid content in yolk and albumen is similar in each system. Although some potential confounding factors may be present for comparing egg content between cage (CP 15.5%) and barn (CP 17.0%) systems, this study suggests that commercially available cage-free eggs may be different from cage eggs not only in external egg traits but also yolk and albumen amino acid traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.