Delayed onset muscle soreness (DOMS) is quite common, but the mechanism for this phenomenon is still not understood; even the existence of muscle tenderness (mechanical hyperalgesia) has not been demonstrated in experimental models. We developed an animal model of DOMS by inducing eccentric contraction (lengthening contraction, ECC) to the extensor digitorum longus muscle (EDL), and investigated the existence of mechanical hyperalgesia in the EDL by means of behavioural pain tests (Randall-Selitto test and von Frey hair test, applied to/through the skin on the EDL muscle) and c-Fos expression in the spinal dorsal horn. We found that the mechanical withdrawal threshold measured with the Randall-Selitto apparatus decreased significantly between 1 and 3 days after ECC, while that measured by von Frey hairs did not. The group that underwent stretching of the muscle only (SHAM group) showed no change in mechanical pain threshold in either test. These results demonstrated that the pain threshold of deep tissues (possibly of the muscle) decreased after ECC. c-Fos immunoreactivity in the dorsal horn (examined 2 days after ECC/SHAM exercise) was not changed by either ECC or compression (1568 mN) to the EDL muscle by itself, but it was significantly increased by applying compression to the EDL muscle 2 days after ECC. This increase was observed in the superficial dorsal horn of the L4 segment of the ipsilateral side, and was clearly suppressed by morphine treatment (10 mg kg −1 , I.P.). These results demonstrated the existence of mechanical hyperalgesia in the muscle subjected to ECC. This model could be used for future study of the neural mechanism of muscle soreness.
The cloning of DNA fragments into vectors or host genomes has traditionally been performed using Escherichia coli with restriction enzymes and DNA ligase or homologous recombination-based reactions. We report here a novel DNA cloning method that does not require DNA end processing or homologous recombination, but that ensures highly accurate cloning. The method exploits the efficient non-homologous endjoining (NHEJ) activity of the yeast Kluyveromyces marxianus and consists of a novel functional marker selection system. First, to demonstrate the applicability of NHEJ to DNA cloning, a C-terminal-truncated non-functional ura3 selection marker and the truncated region were PCR-amplified separately, mixed and directly used for the transformation. URA3 + transformants appeared on the selection plates, indicating that the two DNA fragments were correctly joined by NHEJ to generate a functional URA3 gene that had inserted into the yeast chromosome. To develop the cloning system, the shortest URA3 C-terminal encoding sequence that could restore the function of a truncated non-functional ura3 was determined by deletion analysis, and was included in the primers to amplify target DNAs for cloning. Transformation with PCR-amplified target DNAs and C-terminal truncated ura3 produced numerous transformant colonies, in which a functional URA3 gene was generated and was integrated into the chromosome with the target DNAs. Several K. marxianus circular plasmids with different selection markers were also developed for NHEJ-based cloning and recombinant DNA construction. The one-step DNA cloning method developed here is a relatively simple and reliable procedure among the DNA cloning systems developed to date. Copyright
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.