Neuronal migration and process formation require cytoskeletal organization and remodeling. Recent studies suggest that centrosome translocation is involved in initial axon outgrowth, while the role of centrosomal positioning is not clear. Here, we examine relations between centrosomal positioning, axonogenesis, and microtubule (MT) polarization in multipolar and bipolar neocortical neurons. We monitored dynamic movements of centrosomes and MT plus ends in migratory neurons in embryonic mouse cerebral slices. In locomoting bipolar neurons, the centrosome oriented toward the pia-directed leading process. Bipolar neurons displayed dense MT plus end dynamics in leading processes, while trailing processes showed clear bidirectional MTs. In migrating multipolar neurons, new processes emerged irrespective of centrosome localization, followed by centrosome reorientations toward the dominant process. Anterograde movements of MT plus ends occurred in growing processes and retrograde movements were observed after retraction of the distal tip. In multipolar neurons, axon formed by tangential extension of a dominant process and the centrosome oriented toward the growing axon, while in locomoting neurons, an axon formed opposite to the direction of migration and the centrosome localized to the base of the leading process. Our data suggest that MT organization may alter centrosomal localization and that centrosomal positioning does not necessarily direct process formation.
Microtubules (MTs) are essential for neuronal morphogenesis in the developing brain. The MT cytoskeleton provides physical support to shape the fine structure of neuronal processes. MT-based motors play important roles in nucleokinesis, process formation and retraction. Regulation of MT stability downstream of extracellular cues is proposed to be critical for axonogenesis. Axons and dendrites exhibit different patterns of MT organization, underlying the divergent functions of these processes. Centrosomal positioning has drawn the attention of researchers because it is a major clue to understanding neuronal MT organization. In this review, we focus on how recent advances in live imaging have revealed the dynamics of MT organization and centrosome positioning during neural development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.