The bactericidal lectin RegIIIβ is inducibly produced by intestinal epithelial cells as a defense against infection by enteropathogens. In the gut lumen, RegIIIβ kills not only certain enteropathogens, but also some commensal bacteria; thus, RegIIIβ is also thought to be an innate immune effector shaping microbiota composition and establishing intestinal homeostasis. Using the streptomycin mouse model for Salmonella colitis, we show that RegIIIβ can promote sustained gut colonization of Salmonella Typhimurium and prolong enteropathy. RegIIIβ expression was associated with suppression of Bacteroides spp. in the gut lumen, prolonged disease-associated alterations in colonic metabolism, and reduced luminal vitamin B6 levels. Supplementation with Bacteroides spp. or vitamin B6 accelerated pathogen clearance from the gut and remission of enteropathy. Our findings indicate that interventions at the level of RegIIIβ and supplementation with Bacteroides spp. or vitamin B6 might open new avenues for therapeutic intervention in the context of Salmonella colitis.
Salmonella enterica serovar Typhimurium (S. Tm) is a cause of food poisoning accompanied with gut inflammation. Although mucosal inflammation is generally thought to be protective against bacterial infection, S. Tm exploits the inflammation to compete with commensal microbiota, thereby growing up to high densities in the gut lumen and colonizing the gut continuously at high levels. However, the molecular mechanisms underlying the beneficial effect of gut inflammation on S. Tm competitive growth are poorly understood. Notably, the twin-arginine translocation (Tat) system, which enables the transport of folded proteins outside bacterial cytoplasm, is well conserved among many bacterial pathogens, with Tat substrates including virulence factors and virulence-associated proteins. Here, we show that Tat and Tat-exported peptidoglycan amidase, AmiA- and AmiC-dependent cell division contributes to S. Tm competitive fitness advantage in the inflamed gut. S. Tm tatC or amiA amiC mutants feature a gut colonization defect, wherein they display a chain form of cells. The chains are attributable to a cell division defect of these mutants and occur in inflamed but not in normal gut. We demonstrate that attenuated resistance to bile acids confers the colonization defect on the S. Tm amiA amiC mutant. In particular, S. Tm cell chains are highly sensitive to bile acids as compared to single or paired cells. Furthermore, we show that growth media containing high concentrations of NaCl and sublethal concentrations of antimicrobial peptides induce the S. Tm amiA amiC mutant chain form, suggesting that gut luminal conditions such as high osmolarity and the presence of antimicrobial peptides impose AmiA- and AmiC-dependent cell division on S. Tm. Together, our data indicate that Tat and the Tat-exported amidases, AmiA and AmiC, are required for S. Tm luminal fitness in the inflamed gut, suggesting that these proteins might comprise effective targets for novel antibacterial agents against infectious diarrhea.
, a common cause of diarrhea, has to colonize the gut lumen to elicit disease. In the gut, the pathogen encounters a vast array of environmental stresses that cause perturbations in the bacterial envelope. The CpxRA two-component system monitors envelope perturbations and responds by altering the bacterial gene expression profile. This allows to survive under such harmful conditions. Therefore, CpxRA activation is likely to contribute to gut infection. However, the role of the CpxRA-mediated envelope stress response in-induced diarrhea is unclear. Here, we show that CpxRA is dispensable for the induction of colitis by serovar Typhimurium, whereas it is required for gut colonization. We prove that CpxRA is expressed during gut infection and that the presence of antimicrobial peptides in growth media activates the expression of CpxRA-regulated genes. In addition, we demonstrate that a Typhimurium strain lacking the gene is able to cause colitis but is unable to continuously colonize the gut. Finally, we show that CpxRA-dependent gut colonization requires the host gut inflammatory response, while DegP, a CpxRA-regulated protease, is dispensable. Our findings reveal that the CpxRA-mediated envelope stress response plays a crucial role in gut infection, suggesting that CpxRA might be a promising therapeutic target for infectious diarrhea.
Mucosal barrier formed by cationic antimicrobial peptides (CAMPs) is believed to be crucial for host protection from pathogenic gut infection. However, some pathogens can develop resistance to the CAMPs to survive in hosts. Salmonella enterica is a common cause of acute diarrhea. During the course of this disease, the pathogen must continuously colonize the gut lumen, which contains CAMPs. However, it is incompletely understood whether the resistance of Salmonella strains to CAMPs contributes to the development of gut infections. PhoPQ two-component system-dependent lipid A modifications confer resistance to CAMPs in S. enterica serovar Typhimurium. Therefore, we introduced mutations into the PhoPQ-regulated genes in an S. Typhimurium strain, obtaining pagP ugtL and pmrA mutant strains. Each mutant strain demonstrated a distinct spectrum of the resistance to CAMPs. Using streptomycin mouse model for Salmonella diarrhea, we show that the pagP ugtL, but not pmrA, mutant strain had a gut colonization defect. Furthermore, the pagP ugtL, but not pmrA, mutant strain had decreased outer membrane integrity and susceptibility to magainin 2, an alpha-helical CAMP. Taken together, the PagP- and UgtL-dependent resistance to CAMPs was demonstrated to contribute to sustained colonization in the gut. This may be due to the robust outer membrane of S. Typhimurium, inducing the resistance to alpha-helical CAMPs such as α-defensins. Our findings indicate that the development of resistance to CAMPs is required for the S. Typhimurium gut infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.