Centrosome amplification frequently occurs in human cancers and is a major cause of chromosome instability (CIN). In mouse cells, centrosome amplification can be readily induced by loss or mutational inactivation of p53. In human cells, however, silencing of endogenous p53 alone does not induce centrosome amplification or CIN, although high degrees of correlation between p53 mutation and CIN/centrosome amplification in human cancer can be detected, suggesting the presence of additional regulatory mechanism(s) in human cells that ensures the numeral integrity of centrosomes and genomic integrity. Cyclin E, a regulatory subunit for CDK2 that plays a key role in centrosome duplication, frequently is overexpressed in human cancers. We found that cyclin E overexpression, together with loss of p53, efficiently induces centrosome amplification and CIN in human bladder cancer cells but not by either cyclin E overexpression or loss of p53 alone. We extended these findings to bladder cancer specimens and found that centrosome amplification is strongly correlated with concomitant occurrence of cyclin E overexpression and p53 inactivation but not with either cyclin E overexpression or p53 inactivation alone. Because cyclin E expression is strictly controlled in human cells compared with mouse cells, our findings suggest that this stringent regulation of cyclin E expression plays an additional role underlying numeral homeostasis of centrosomes in human cells and that deregulation of cyclin E expression, together with inactivation of p53, results in centrosome amplification.
AIMTo investigated the relationship between postoperative bleeding following gastric endoscopic submucosal dissection (ESD) and individual antithrombotic agents.METHODSA total of 2488 gastric neoplasms in 2148 consecutive patients treated between May 2001 and June 2016 were studied. The antithrombotic agents were categorized into antiplatelet agents, anticoagulants, and other antithrombotic agents, and we included combination therapies [e.g., dual antiplatelet therapy (DAPT)]. The risk factors associated with post-ESD bleeding, namely, antithrombotic agents overall, individual antithrombotic agents, withdrawal or continuation of antithrombotic agents, and bleeding onset period (during the first six days or thereafter), were analyzed using univariate and multivariate analyses.RESULTSThe en bloc resection and complete curative resection rates were 99.2% and 91.9%, respectively. Postoperative bleeding occurred in 5.1% cases. Bleeding occurred in 10.3% of the patients administered antithrombotic agents. Being male (P = 0.007), specimen size (P < 0.001), and antithrombotic agent used (P < 0.001) were independent risk factors for postoperative bleeding. Heparin bridging therapy (HBT) (P = 0.002) and DAPT/multidrug combinations (P < 0.001) were independent risk factors associated with postoperative bleeding. The bleeding rate of the antithrombotic agent continuation group was significantly higher than that of the withdrawal group (P < 0.01). Bleeding within postoperative day (POD) 6 was significantly higher in warfarin (P = 0.015), and bleeding after POD 7 was significantly higher in DAPT/multidrug combinations (P = 0.007). No thromboembolic events were reported.CONCLUSIONWe must closely monitor patients administered HBT and DAPT/multidrug combinations after gastric ESD, particularly those administered multidrug combinations after discharge.
The circadian clock regulates behavioural and physiological processes in a 24-h cycle. The nuclear receptors REV-ERBα and REV-ERBβ are involved in the cell-autonomous circadian transcriptional/translational feedback loops as transcriptional repressors. A number of studies have also demonstrated a pivotal role of REV-ERBs in regulation of metabolic, neuronal, and inflammatory functions including bile acid metabolism, lipid metabolism, and production of inflammatory cytokines. Given the multifunctional role of REV-ERBs, it is important to elucidate the mechanism through which REV-ERBs exert their functions. To this end, we established a Rev-erbα / Rev-erbβ double-knockout mouse embryonic stem (ES) cell model and analyzed the circadian clock and clock-controlled output gene expressions. A comprehensive mRNA-seq analysis revealed that the double knockout of both Rev-erbα and Rev-erbβ does not abrogate expression rhythms of E-box-regulated core clock genes but drastically changes a diverse set of other rhythmically-expressed output genes. Of note, REV-ERBα/ β deficiency does not compromise circadian expression rhythms of PER2, while REV-ERB target genes, Bmal1 and Npas2 , are significantly upregulated. This study highlight the relevance of REV-ERBs as pivotal output mediators of the mammalian circadian clock.
Schizophrenia (SCZ) is known to be a heritable disorder; however, its multifactorial nature has significantly hampered attempts to establish its pathogenesis. Therefore, in this study, we performed genome-wide copy-number variation (CNV) analysis of 2940 patients with SCZ and 2402 control subjects and identified a statistically significant association between SCZ and exonic CNVs in the ARHGAP10 gene. ARHGAP10 encodes a member of the RhoGAP superfamily of proteins that is involved in small GTPase signaling. This signaling pathway is one of the SCZ-associated pathways and may contribute to neural development and function. However, the ARHGAP10 gene is often confused with ARHGAP21 , thus, the significance of ARHGAP10 in the molecular pathology of SCZ, including the expression profile of the ARHGAP10 protein, remains poorly understood. To address this issue, we focused on one patient identified to have both an exonic deletion and a missense variant (p.S490P) in ARHGAP10 . The missense variant was found to be located in the RhoGAP domain and was determined to be relevant to the association between ARHGAP10 and the active form of RhoA. We evaluated ARHGAP10 protein expression in the brains of reporter mice and generated a mouse model to mimic the patient case. The model exhibited abnormal emotional behaviors, along with reduced spine density in the medial prefrontal cortex (mPFC). In addition, primary cultured neurons prepared from the mouse model brain exhibited immature neurites in vitro. Furthermore, we established induced pluripotent stem cells (iPSCs) from this patient, and differentiated them into tyrosine hydroxylase (TH)-positive neurons in order to analyze their morphological phenotypes. TH-positive neurons differentiated from the patient-derived iPSCs exhibited severe defects in both neurite length and branch number; these defects were restored by the addition of the Rho-kinase inhibitor, Y-27632. Collectively, our findings suggest that rare ARHGAP10 variants may be genetically and biologically associated with SCZ and indicate that Rho signaling represents a promising drug discovery target for SCZ treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.