Realistic finite temperature simulations of matter are a formidable challenge for first principles methods. Long simulation times and large length scales are required, demanding years of compute time. Here we present an on-the-fly machine learning scheme that generates force fields automatically during molecular dynamics simulations. This opens up the required time and length scales, while retaining the distinctive chemical precision of first principles methods and minimizing the need for human intervention. The method is widely applicable to multi-element complex systems. We demonstrate its predictive power on the entropy driven phase transitions of hybrid perovskites, which have never been accurately described in simulations. Using machine learned potentials, isothermalisobaric simulations give direct insight into the underlying microscopic mechanisms. Finally, we relate the phase transition temperatures of different perovskites to the radii of the involved species, and we determine the order of the transitions in Landau theory.
An efficient and robust on-the-fly machine learning force field method is developed and integrated into an electronic-structure code. This method realizes automatic generation of machine learning force fields on the basis of Bayesian inference during molecular dynamics simulations, where the first principles calculations are only executed, when new configurations out of already sampled datasets appear. The developed method is applied to the calculation of melting points of Al, Si, Ge, Sn and MgO. The applications indicate that more than 99 % of the first principles calculations are bypassed during the force field generation. This allows the machine to quickly construct first principles datasets over wide phase spaces. Furthermore, with the help of the generated machine learning force fields, simulations are accelerated by a factor of thousand compared with first principles calculations. Accuracies of the melting points calculated by the force fields are examined by thermodynamic perturbation theory, and the examination indicates that the machine learning force fields can quantitatively reproduce the first principles melting points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.