“Foam Rolling” has been used in sports settings to increase range of motion and decrease muscle stiffness without decreasing muscle strength and athletic performance. However, there has been no study investigating the acute and prolonged effect of different durations of foam rolling intervention on muscle stiffness, and the minimum foam rolling intervention duration required to decrease muscle stiffness is unclear. Therefore, the purpose of this study was to investigate the acute and prolonged effect of different durations of foam rolling intervention on ROM, muscle stiffness, and muscle strength. The 45 participants were randomly allocated to 1 of 3 groups (30 s × 1 times group vs 30 s × 3 times group vs 30 s× 10 times group). The outcome measures were dorsiflexion range of motion, shear elastic modulus of medial gastrocnemius, and muscle strength before, 2 min and 30 min after foam rolling intervention. There were no significant differences before and 2 min after foam rolling intervention in 30 s×1 time group, whereas dorsiflexion range of motion was increased in both 30 s×3 times group (p = 0.042, d = 0.26) and 30 s× 10 times group (p < 0.01, d = 0.33). However, the increase in dorsiflexion range of motion was returned to baseline value after 30 minutes in both 30 s × 3 times group and 30 s × 10 times group. In addition, there were no significant changes in shear elastic modulus and muscle strength in all groups. This study suggested that foam rolling for more than 90 s or more of foam rolling was effective in order to increase the range of motion immediately without changing muscle stiffness and muscle strength.
Muscle strain is one of the most frequent sports injuries, having the rectus femoris (RF) muscle as the reported preferred site of quadriceps muscle strain. The decrease muscle stiffness could be an effective RF muscle strain prevention. In recent studies, a high-intensity static stretching intervention decreased passive stiffness, though no study has investigated on the effect of the different static stretching intervention intensities on quadriceps muscle stiffness. The purpose of this study was to investigate the three different quadriceps muscle stiffness intensities (120 vs. 100 vs. 80%). Eighteen healthy, sedentary male volunteers participated in the study and randomly performed three intensities. The static stretching intervention was performed in knee flexion with 30° hip extension. Three 60-second stretching intervention with a 30-second interval were performed at each stretching intensity. We measured knee flexion range of motion and shear elastic modulus of the RF muscle used by ultrasonic shear-wave elastography before and after the static stretching intervention. Our results showed that the knee flexion range of motion was increased after 100% (p < 0.01) and 120% intensities (p < 0.01) static stretching intervention, not in 80% intensity (p = 0.853). In addition, our results showed that the shear elastic modulus of the RF muscle was decreased only after 100% intensity static stretching intervention (p < 0.01), not after 80% (p = 0.365), and 120% intensities (p = 0.743). To prevent the quadriceps muscle strain, especially the RF muscle, 100%, not 120% (high) and 80% (low), intensity stretching could be beneficial in sports setting application.
Previous studies have shown significant improvement in muscle soreness and muscle function loss after 300-s foam rolling intervention two days after intense exercise. However, this duration is assumed to be too long, so investigating the effect of short-term duration foam rolling intervention on an eccentrically-damaged muscle is needed. This study aimed to eccentrically induce muscle damage in the leg extensors, and to detect the acute effect of 90-s foam rolling on muscle soreness and muscle function of the quadriceps muscle. We enrolled 17 healthy and nonathlete male volunteers. They performed a bout of eccentric exercise of the knee extensors with the dominant leg and received 90-s foam rolling intervention of the quadriceps two days after the eccentric exercise. The dependent variables were measured before the eccentric exercise (baseline), and before (preintervention) and after foam rolling intervention (postintervention), two days after the eccentric exercise. The results show that the preintervention muscle soreness and muscle strength values were significantly increased, compared with the baseline values, whereas the postintervention values were significantly decreased, compared with the preintervention values. Furthermore, 90-s of foam rolling intervention could improve muscle soreness and muscle function loss.
In clinical and sports settings, foam rolling (FR) intervention is widely used to increase the range of motion (ROM). However, the chronic effects of FR on ROM and muscle stiffness are unclear. The aim of this study was to investigate the effects of 5-week FR intervention on dorsiflexion ROM (DFROM) and shear elastic modulus of the medial gastrocnemius (MG) muscle. Accordingly, 30 healthy young adults were enrolled and randomly assigned to either the FR or control group with the former receiving 90 seconds of FR thrice per week over 5 weeks. Thereafter, DFROM, passive torque at DFROM, and shear elastic modulus of the MG during passive ankle dorsiflexion were assessed using a dynamometer and ultrasonography before and after 5 weeks. Our results showed that the FR group exhibited a significant increase in DFROM (D 5 11.7%, p , 0.05, effect size 5 0.39), but no changes in passive torque at DFROM, and shear elastic modulus at 0˚and 10˚dorsiflexion. Moreover, significant correlations were observed between change in DFROM and change in passive torque at DFROM in the FR group (r s 5 0.607, p 5 0.016). These results suggested that FR was an effective method to increase DFROM given its ability to change passive torque at DFROM (stretch tolerance) without altering muscle stiffness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.