Outside cells of the preimplantation mouse embryo form the trophectoderm (TE), a process requiring the transcription factor Tead4. Here, we show that transcriptionally active Tead4 can induce Cdx2 and other trophoblast genes in parallel in embryonic stem cells. In embryos, the Tead4 coactivator protein Yap localizes to nuclei of outside cells, and modulation of Tead4 or Yap activity leads to changes in Cdx2 expression. In inside cells, Yap is phosphorylated and cytoplasmic, and this involves the Hippo signaling pathway component Lats. We propose that active Tead4 promotes TE development in outside cells, whereas Tead4 activity is suppressed in inside cells by cell contact- and Lats-mediated inhibition of nuclear Yap localization. Thus, differential signaling between inside and outside cell populations leads to changes in cell fate specification during TE formation.
Members of the muscarinic acetylcholine receptor family (M1-M5) have central roles in the regulation of many fundamental physiological functions. Identifying the specific receptor subtype(s) that mediate the diverse muscarinic actions of acetylcholine is of considerable therapeutic interest, but has proved difficult primarily because of a lack of subtype-selective ligands. Here we show that mice deficient in the M3 muscarinic receptor (M3R-/- mice) display a significant decrease in food intake, reduced body weight and peripheral fat deposits, and very low levels of serum leptin and insulin. Paradoxically, hypothalamic messenger RNA levels of melanin-concentrating hormone (MCH), which are normally upregulated in fasted animals leading to an increase in food intake, are significantly reduced in M3R-/- mice. Intra-cerebroventricular injection studies show that an agouti-related peptide analogue lacked orexigenic (appetite-stimulating) activity in M3R-/- mice. However, M3R-/- mice remained responsive to the orexigenic effects of MCH. Our data indicate that there may be a cholinergic pathway that involves M3-receptor-mediated facilitation of food intake at a site downstream of the hypothalamic leptin/melanocortin system and upstream of the MCH system.
Defensins comprise a family of cationic antimicrobial peptides that are characterized by the presence of six conserved cysteine residues. We identified two novel human β-defensin (hBD) isoforms by mining the public human genomic sequences. The predicted peptides conserve the six-cysteine motif identical with hBD-4, termed hBD-5 and hBD-6. We also evaluated the characteristics of the mouse homologs of hBD-5, hBD-6, and HE2β1, termed mouse β-defensin (mBD)-12, mBD-11, and mouse EP2e (mEP2e). The mBD-12 synthetic peptide showed salt-dependent antimicrobial activity. We demonstrate the epididymis-specific expression pattern of hBD-5, hBD-6, mBD-11, mBD-12, and mEP2e. In situ hybridization revealed mBD-11, mBD-12, and mEP2e expression in the columnar epithelium of the caput epididymis, contrasting with the predominant expression of mBD-3 in the capsule or septum of the whole epididymis. In addition, the regional specificity of mBD-11, mBD-12, and mEP2e was somewhat overlapping, but not identical, in the caput epididymis, suggesting that specific regulation may work for each member of the β-defensin family. Our findings indicated that multiple β-defensin isoforms specifically and cooperatively contribute to the innate immunity of the urogenital system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.