A novel audio feature projection using Kernel Discriminative Locality Preserving Canonical Correlation Analysis (KDLPCCA)-based correlation with electroencephalogram (EEG) features for favorite music classification is presented in this paper. The projected audio features reflect individual music preference adaptively since they are calculated by considering correlations with the user's EEG signals during listening to musical pieces that the user likes/dislikes via a novel CCA proposed in this paper. The novel CCA, called KDLPCCA, can consider not only a non-linear correlation but also local properties and discriminative information of each class sample, namely, music likes/dislikes. Specifically, local properties reflect intrinsic data structures of the original audio features, and discriminative information enhances the power of the final classification. Hence, the projected audio features have an optimal correlation with individual music preference reflected in the user's EEG signals, adaptively. If the KDLPCCA-based projection that can transform original audio features into novel audio features is calculated once, our method can extract projected audio features from a new musical piece without newly observing individual EEG signals. Our method therefore has a high level of practicability. Consequently, effective classification of user's favorite musical pieces via a Support Vector Machine (SVM) classifier using the new projected audio features becomes feasible. Experimental results show that our method for favorite music classification using projected audio features via the novel CCA outperforms methods using original audio features, EEG features and even audio features projected by other state-of-the-art CCAs.
This paper proposes several improvements for music separation with deep neural networks (DNNs), namely a multi-domain loss (MDL) and two combination schemes. First, by using MDL we take advantage of the frequency and time domain representation of audio signals. Next, we utilize the relationship among instruments by jointly considering them. We do this on the one hand by modifying the network architecture and introducing a CrossNet structure. On the other hand, we consider combinations of instrument estimates by using a new combination loss (CL). MDL and CL can easily be applied to many existing DNN-based separation methods as they are merely loss functions which are only used during training and do not affect the inference step. Experimental results show that the performance of Open-Unmix (UMX), a well-known and state-of-the-art open-source library for music separation, can be improved by utilizing our above schemes. Our modifications of UMX are opensourced together with this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.