BackgroundAngiogenesis is important in the growth and metastasis of various kinds of solid tumors, including gastric cancers. The angiogenic process is triggered by several key growth factors, including vascular endothelial growth factor (VEGF)-A and platelet-derived growth factor (PDGF)-B, that are secreted by tumors. Our aim was to define: i) the expression pattern of VEGF-A and PDGF-B in tumor cells and the activation of PDGF receptor (PDGFR)-β tyrosine kinase in stromal cells of human gastric adenocarcinomas; and ii) the relationship between VEGF-A and PDGF-B expression and microvessel density (MVD), to determine if there is a rationale for a new therapeutic strategy.MethodsA series of 109 gastric adenocarcinoma cases that had undergone surgical resection was examined immunohistochemically using antibodies against VEGF-A, PDGF-B, and CD34, followed by further examination of PDGFR-β phosphorylation by immunoblotting analysis.ResultsMVD was higher in diffuse-type than intestinal-type cancers (p < 0.001). VEGF-A overexpression correlated to PDGF-B overexpression in both the intestinal-type (p < 0.005) and diffuse-type (p < 0.0001) groups, indicating that VEGF-A and PDGF-B are secreted simultaneously in the same tumor, and may thus play important roles together in angiogenesis. However, several differences between intestinal-type and diffuse-type cancers were observed. In the diffuse-type cancer group, higher MVD was related to the PDGF-B proportion (p < 0.05) and VEGF-A overexpression (p < 0.05), but not to PDGF-B overexpression or the VEGF-A proportion. On the other hand, in the intestinal-type cancer group, higher MVD was correlated to overexpression (p < 0.005), intensity (p < 0.05), and proportion (p < 0.05) of PDGF-B, but not of VEGF-A. In addition, phosphorylation of PDGFR-β was correlated with depth of cancer invasion at statistically significant level.ConclusionsOur results indicate that PDGF-B, which is involved in the maintenance of microvessels, plays a more important role in angiogenesis in intestinal-type gastric carcinomas than VEGF-A, which plays a key role mainly in the initiation of new blood vessel formation. In contrast, VEGF-A has a critical role for angiogenesis more in diffuse-type cancers, but less in those of intestinal type. Thus, a therapy targeting the PDGF-B signaling pathway could be effective for intestinal-type gastric carcinoma, whereas targeting VEGF-A or both VEGF-A and PDGF-B signaling pathways could be effective for diffuse-type gastric carcinomas.
Neural epidermal growth factor-like like (NELL) 1 and 2 constitute a family of multimeric and multimodular extracellular glycoproteins. Although the osteogenic effects of NELL1 and functions of NELL2 in neural development have been reported, their expression and functions in cancer are largely unknown. In this study, we examined expression of NELL1 and NELL2 in renal cell carcinoma (RCC) using clinical specimens and cell lines. We show that, whereas NELL1 and NELL2 proteins are strongly expressed in renal tubules in non-cancerous areas of RCC specimens, their expression is significantly downregulated in cancerous areas. Silencing of NELL1 and NELL2 mRNA expression was also detected in RCC cell lines. Analysis of NELL1/2 promoter methylation status indicated that the CpG islands in the NELL1 and NELL2 genes are hypermethylated in RCC cell lines. NELL1 and NELL2 bind to RCC cells, suggesting that these cells express a receptor for NELL1 and NELL2 that can transduce signals. Furthermore, we found that both NELL1 and NELL2 inhibit RCC cell migration, and NELL1 further inhibits RCC cell adhesion. These results suggest that silencing of NELL gene expression by promoter hypermethylation plays roles in RCC progression by affecting cancer cell behavior.
S U M M A R YTwo types of NADP-dependent isocitrate dehydrogenases (ICDs) have been reported: mitochondrial (ICD1) and cytosolic (ICD2). The C-terminal amino acid sequence of ICD2 has a tripeptide peroxisome targeting signal 1 sequence (PTS1). After differential centrifugation of the postnuclear fraction of rat liver homogenate, approximately 75% of ICD activity was found in the cytosolic fraction. To elucidate the true localization of ICD2 in rat hepatocytes, we analyzed the distribution of ICD activity and immunoreactivity in fractions isolated by Nycodenz gradient centrifugation and immunocytochemical localization of ICD2 antigenic sites in the cells. On Nycodenz gradient centrifugation of the light mitochondrial fraction, ICD2 activity was distributed in the fractions in which activity of catalase, a peroxisomal marker, was also detected, but a low level of activity was also detected in the fractions containing activity for succinate cytochrome C reductase (a mitochondrial marker) and acid phosphatase (a lysosomal marker). We have purified ICD2 from rat liver homogenate and raised a specific antibody to the enzyme. On SDS-PAGE, a single band with a molecular mass of 47 kD was observed, and on immunoblotting analysis of rat liver homogenate a single signal was detected. Double staining of catalase and ICD2 in rat liver revealed co-localization of both enzymes in the same cytoplasmic granules. Immunoelectron microscopy revealed gold particles with antigenic sites of ICD2 present mainly in peroxisomes. The results clearly indicated that ICD2 is a peroxisomal enzyme in rat hepatocytes. ICD2 has been regarded as a cytosolic enzyme, probably because the enzyme easily leaks out of peroxisomes during homogenization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.