Many biochemical, physiological and behavioural processes show circadian rhythms which are generated by an internal time-keeping mechanism referred to as the biological clock. According to rapidly developing models, the core oscillator driving this clock is composed of an autoregulatory transcription-(post) translation-based feedback loop involving a set of 'dock' genes. Molecular clocks do not oscillate with an exact 24-hour rhythmicity but are entrained to solar day/night rhythms by light. The mammalian proteins Cryl and Cry2, which are members of the family of plant blue-light receptors (cryptochromes) and photolyases, have been proposed as candidate light receptors for photoentrainment of the biological clock. Here we show that mice lacking the Cryl or Cry2 protein display accelerated and delayed free-running periodicity of locomotor activity, respectively. Strikingly, in the absence of both proteins, an instantaneous and complete loss of free-running rhythmicity is observed. This suggests that, in addition to a possible photoreceptor and antagonistic clock-adjusting function, both proteins are essential for the maintenance of circadian rhythmicity.
Astrocytic damage reflected by elevated CSF glial fibrillary acidic protein is a clinically relevant, primary pathologic process in neuromyelitis optica, and is far more severe than demyelination.
IHN could be a clinical marker for the early phase of an exacerbation. Careful observation may be needed when INH is seen in patients with NMO, and the early initiation of the treatment could prevent subsequent neurological damage.
Neuromyelitis optica (NMO) is characterized by severe optic neuritis and transverse myelitis. The relationship of NMO to multiple sclerosis (MS) has long been debated, but NMO has been classified as a demyelinating disease. Since the discovery of an NMO‐specific autoantibody to aquaporin 4 (AQP4), a dominant water channel in the central nervous system densely expressed on end‐feet of astrocytes, the clinical, magnetic resonance imaging and laboratory findings to distinguish NMO from MS have been clarified. Furthermore, pathological studies showed an extensive loss of immunoreactivities to astrocytic proteins, AQP4 and glial fibrillary acidic protein (GFAP), and perivascular deposition of immunoglobulins and activated complements with a relative preservation of the staining of myelin basic protein (MBP) in acute NMO lesions, but not in MS. In support of these pathological findings, the GFAP levels in the cerebrospinal fluid (CSF) during acute exacerbation of NMO are remarkably elevated compared with MBP and neurofilament, whereas the CSF‐GFAP in MS is not different from those in controls. Additionally, recent experimental studies have convincingly shown that AQP4 antibody is pathogenic in causing astorocytic destruction and dysfunction in vitro, ex vivo and in vivo. These findings strongly suggest that damage of astrocytes is far more severe than those of myelin and neurons, and that autoimmune astrocytopathy is the primary pathology in NMO. Based on these accumulated data, we propose that NMO should be classified as an astrocytopathic disease rather than a demyelinating disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.