The regional distribution of white matter (WM) abnormalities in schizophrenia remains poorly understood, and reported disease effects on the brain vary widely between studies. In an effort to identify commonalities across studies, we perform what we believe is the first ever large-scale coordinated study of WM microstructural differences in schizophrenia. Our analysis consisted of 2359 healthy controls and 1963 schizophrenia patients from 29 independent international studies; we harmonized the processing and statistical analyses of diffusion tensor imaging (DTI) data across sites and meta-analyzed effects across studies. Significant reductions in fractional anisotropy (FA) in schizophrenia patients were widespread, and detected in 20 of 25 regions of interest within a WM skeleton representing all major WM fasciculi. Effect sizes varied by region, peaking at (d=0.42) for the entire WM skeleton, driven more by peripheral areas as opposed to the core WM where regions of interest were defined. The anterior corona radiata (d=0.40) and corpus callosum (d=0.39), specifically its body (d=0.39) and genu (d=0.37), showed greatest effects. Significant decreases, to lesser degrees, were observed in almost all regions analyzed. Larger effect sizes were observed for FA than diffusivity measures; significantly higher mean and radial diffusivity was observed for schizophrenia patients compared with controls. No significant effects of age at onset of schizophrenia or medication dosage were detected. As the largest coordinated analysis of WM differences in a psychiatric disorder to date, the present study provides a robust profile of widespread WM abnormalities in schizophrenia patients worldwide. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org.
Although the developers of the Positive and Negative Syndrome Scale (PANSS) grouped items into three subscales, factor analyses indicate that a five-factor model better characterizes PANSS data. However, lack of consensus on which model to use limits the comparability of PANSS variables across studies. We counted “votes” from published factor analyses to derive consensus models. One of these combined superior fit in our Caucasian sample (n=458, CFI = .970), and in distinct Japanese sample (n=164, CFI = .964), relative to the original three-subscale model, with a sorting of items into factors that was highly consistent across the studies reviewed.
BackgroundLithium remains a first-line treatment in bipolar disorder, but individual response is variable. Previous studies have suggested that lithium response is a heritable trait. However, no genetic markers have been reproducibly identified.MethodsHere we report the results of a genome-wide association study of lithium response in 2,563 patients collected by 22 participating sites from the International Consortium on Lithium Genetics (ConLiGen); the largest attempted so far. Data from over 6 million common single nucleotide polymorphisms (SNPs) were tested for association with categorical and continuous ratings of lithium response of known reliability.FindingsA single locus of four linked SNPs on chromosome 21 met genome-wide significance criteria for association with lithium response (rs79663003: p=1·37×10−8; rs78015114: p=1·31×10−8; rs74795342: p=3·31×10−9; rs75222709: p=3·50×10−9). In an independent, prospective study of 73 patients treated with lithium monotherapy for a period of up to two years, carriers of the response-associated alleles had a significantly lower rate of relapse than carriers of the alternate alleles (p=0·03, hazard ratio = 3·8).InterpretationThe response-associated region contains two genes coding for long non-coding RNAs (lncRNAs), AL157359.3 and AL157359.4. LncRNAs are increasingly appreciated as important regulators of gene expression, particularly in the CNS. Further studies are needed to establish the biological context of these findings and their potential clinical utility. Confirmed biomarkers of lithium response would constitute an important step forward in the clinical management of bipolar disorder.
Genetic variation in dysbindin (DTNBP1: dystrobrevin-binding protein 1) has recently been shown to be associated with schizophrenia. The dysbindin gene is located at chromosome 6p22.3, one of the most promising susceptibility loci in schizophrenia linkage studies. We attempted to replicate this association in a Japanese sample of 670 patients with schizophrenia and 588 controls. We found a nominally significant association with schizophrenia for four single nucleotide polymorphisms and stronger evidence for association in a multi-marker haplotype analysis (P = 0.00028). We then explored functions of dysbindin protein in primary cortical neuronal culture. Overexpression of dysbindin induced the expression of two pre-synaptic proteins, SNAP25 and synapsin I, and increased extracellular basal glutamate levels and release of glutamate evoked by high potassium. Conversely, knockdown of endogenous dysbindin protein by small interfering RNA (siRNA) resulted in the reduction of pre-synaptic protein expression and glutamate release, suggesting that dysbindin might influence exocytotic glutamate release via upregulation of the molecules in pre-synaptic machinery. The overexpression of dysbindin increased phosphorylation of Akt protein and protected cortical neurons against neuronal death due to serum deprivation and these effects were blocked by LY294002, a phosphatidylinositol 3-kinase (PI3-kinase) inhibitor. SiRNA-mediated silencing of dysbindin protein diminished Akt phosphorylation and facilitated neuronal death induced by serum deprivation, suggesting that dysbindin promotes neuronal viability through PI3-kinase-Akt signaling. Genetic variants associated with impairments of these functions of dysbindin could play an important role in the pathogenesis of schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.